
CSE143 Sp03 16-1

7/31/2003 (c) 2001-3, University of Washington 16-1

CSE 143 Java

Program Efficiency &
Introduction to Complexity Theory

Reading: Ch. 21 (go light on the math)

7/31/2003 (c) 2001-3, University of Washington 16-2

GREAT IDEAS IN COMPUTER
SCIENCE

ANALYSIS OF ALGORITHMIC COMPLEXITY

7/31/2003 (c) 2001-3, University of Washington 16-3

Overview
• Measuring time and space used by algorithms
• Machine-independent measurements
• Costs of operations
• Asymptotic complexity – O() notation and complexity

classes
• Comparing algorithms
• Performance tuning

7/31/2003 (c) 2001-3, University of Washington 16-4

Comparing Algorithms
• Example: We’ve seen two different list implementations

• Dynamic expanding array
• Linked list

• Which is “better”?
• How do we measure?

• Stopwatch? Why or why not?

7/31/2003 (c) 2001-3, University of Washington 16-5

Program Resources & Efficiency
• Running a program has "costs"
• A program uses computer "resources"

• Execution time
• Execution space
• Network bandwidth
• others

• Goal: Find way to measure "resource" usage in a way
that is independent of particular machines or
implementations

• We will focus on execution time
• Techniques/vocabulary apply to other resource measures

7/31/2003 (c) 2001-3, University of Washington 16-6

Example
• What is the running time of the following method?

// Return the sum of the elements in array.
double sum(double[] data) {

double ans = 0.0;
for (int k = 0; k < data.length; k++) {

ans = ans + data[k];
}
return ans;

}

• How do we analyze this?
• What does the question even mean?

CSE143 Sp03 16-2

7/31/2003 (c) 2001-3, University of Washington 16-7

double sum(double[] data) {

double ans = 0.0;

for (int k = 0; k < data.length; k++) {

ans = ans + data[k];

}

return ans;

}
7/31/2003 (c) 2001-3, University of Washington 16-8

Analysis of Execution Time
1. First: describe the size of the problem in terms of one

or more parameters
• For sum, size of array makes sense
• Often size of data structure, but can be magnitude of some

numeric parameter, etc.

2. Then, count the number of steps needed as a function
of the problem size

• Need to define what a "step" is
• First approximation: one simple statement
• More complex statements will be multiple steps

7/31/2003 (c) 2001-3, University of Washington 16-9

What is a "Step?"

• First approximation:
• one step = one Java statement

• Better: execution of one Java statement
• Take into account statements which are repeated (in loops)
• Take into account statements which are skipped (in

conditionals)
• Take into account work that is performed in advance (by

compiler instead of at run-time)

• Different statement categories may enclose different
numbers of steps
• Consider each type separately: constant-time operations, zero-

time ops, conditionals, loops, methods calls, etc.

7/31/2003 (c) 2001-3, University of Washington 16-10

Cost of operations: Constant Time Ops
• Constant-time operations: each take one abstract time “step”

• Simple variable declaration/initialization (double sum = 0.0;)
• Assignment of numeric or reference values (var = value;)
• Arithmetic operation (+, -, *, /, %)
• Array subscripting (a[index])
• Simple conditional tests (x < y, p != null)
• Operator new itself (not including constructor cost)

Note: new takes significantly longer than simple arithmetic or assignment, but its cost is
independent of the problem we’re trying to analyze

• Note: watch out for things like method calls or constructor
invocations that look simple, but can be expensive

7/31/2003 (c) 2001-3, University of Washington 16-11

Cost of operations: Zero-time Ops
• Can sometimes perform operations at compile time

• Nothing left to do at runtime

• Variable declarations without initialization
double[] overdrafts;

• Variable declarations with compile-time constant
initializers

static final int maxButtons = 3;

• Some casts (but not those that need a runtime check)
int code = (int) ′?′;

7/31/2003 (c) 2001-3, University of Washington 16-12

Cost of operations: Sequences of Statements
• Cost of

S1; S2; …; Sn

is sum of the costs of S1 + S2 + … + Sn

CSE143 Sp03 16-3

7/31/2003 (c) 2001-3, University of Washington 16-13

Cost of operations: Conditional Statement
• We’re generally trying to figure out how long it might

take to execute a statement (worst case), so the cost of
if (condition) {

S1;
} else {

S2;
}

is normally the max cost of S1 or S2 (plus cost of the
condition)

• Other possibilities (less common)
• Best case – use the min cost of S1 or S2
• Expected (average) case – probabilistic analysis needed

7/31/2003 (c) 2001-3, University of Washington 16-14

Cost of operations: Analyzing Loops
• Basic analysis

1. Calculate cost of each iteration
2. Calculate number of iterations
3. Total cost is the product of these

Caution -- need to add up the costs differently if cost of each
iteration is not roughly the same

• Nested loops
• Total cost is number of iterations or the outer loop times the

cost of the inner loop
• same caution as above

7/31/2003 (c) 2001-3, University of Washington 16-15

Cost of operations: Method Calls
• Cost for calling a function (method) is cost of...

cost of evaluating the arguments (constant or non-constant)
+ cost of actually calling the function (constant overhead)
+ cost of passing each parameter (normally constant time in

Java for both numeric and reference values)
+ cost of executing the function body (constant or non-

constant?)
System.out.print(lineNumber);
System.out.println("Answer is " + Math.sqrt(3.14159));

• Note that "evaluating" and "passing" an argument are
two different things

7/31/2003 (c) 2001-3, University of Washington 16-16

Exercise

// print multiplication table with
// n rows and columns
void printMultTable(int n) {

for (int k=0; k <=n; k++) {
printRow(k, n);

}
}

// print row r with length n of a
multiplication table
void printRow(int r, int n) {

for (int k = 0; k <= r; k++) {
System.out.print(r*k + “ ”);

}
System.out.println();

}

Analyze the running time of
printMultTable

Pick the problem size
Count the number of steps

7/31/2003 (c) 2001-3, University of Washington 16-17

Analysis

7/31/2003 (c) 2001-3, University of Washington 16-18

Comparing Algorithms
• Suppose we analyze two algorithms and get these

"times" (numbers of steps):
• Algorithm 1: 37n + 2n2 + 12
• Algorithm 2: 50n + 42

How do we compare these? What really matters?
• Answer: In the long run, the thing that is most

interesting is the cost as the problem size n gets large
• What are the costs for n=10, n=100; n=1,000; n=1,000,000?
• Computers are so fast that how long it takes to solve small

problems is rarely of interest

CSE143 Sp03 16-4

7/31/2003 (c) 2001-3, University of Washington 16-19

Orders of Growth
• What happens as the problem size doubles?

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

7/31/2003 (c) 2001-3, University of Washington 16-20

Sidebar: How Many Atoms In Earth?
As estimated by Tuquynh Nguyen (CSE143, Summer 2003):
"The obvious answer would be: More than any of us can count! But after doing a

bit of researching myself, I found that you can only estimate the fractional
amount of the most abundant types of atoms that the Earth consists of, and
then with the molecular weight and Advocagro's number, we can determine the
number of atoms. This seems to be the general breakdown:

Iron: 1.26(10^51) atoms
Oxygen: 1.08(10^51) atoms
Silicon: 5.40(10^50) atoms
Magnesium: 4.68(10^50) atoms
Sulfur: 7.20(10^49) atoms
Calcium: 3.60(10^49) atoms
Aluminum: 3.60(10^49) atoms"

SUM: 3.49(10^51) TOTAL ATOMS IN THE WORLD

Compare that to the number 103010 on the preceding chart. !!!

7/31/2003 (c) 2001-3, University of Washington 16-21

Asymptotic Complexity
• Asymptotic: Behavior of complexity function as problem

size gets large
• Only thing that really matters is higher-order term
• Can drop low order terms and constants

• The asymptotic complexity gives us a (partial) way to
answer “which algorithm is more efficient”
• Algorithm 1: 37n + 2n2 + 120 is proportional to n2

• Algorithm 2: 50n + 42 is proportional to n

• Graphs of functions are handy tool for comparing
asymptotic behavior

7/31/2003 (c) 2001-3, University of Washington 16-22

Big-O Notation
• Definition: If f(n) and g(n) are two complexity functions,

we say that
f(n) = O(g(n)) (pronounced f(n) is O(g(n)) or is order g(n))

if there is a constant c such that
f(n) ≤≤≤≤ c • g(n)

for all sufficiently large n

7/31/2003 (c) 2001-3, University of Washington 16-23

Exercises
• Prove that 5n+3 is O(n)

• Prove that 5n2 + 42n + 17 is O(n2)

7/31/2003 (c) 2001-3, University of Washington 16-24

Implications
• The notation f(n) = O(g(n)) is not an equality
• Think of it as shorthand for

• “f(n) grows at most like g(n)” or
• “f grows no faster than g” or
• “f is bounded by g”

• O() notation is a worst-case analysis
• Generally useful in practice
• Sometimes want average-case or expected-time analysis if

worst-case behavior is not typical (but these are often harder to
analyze)

CSE143 Sp03 16-5

7/31/2003 (c) 2001-3, University of Washington 16-25

Complexity Classes
• Several common complexity classes (problem size n)

• Constant time: O(k) or O(1)
• Logarithmic time: O(log n) [Base doesn’t matter. Why?]

• Linear time: O(n)
• “n log n” time: O(n log n)
• Quadratic time: O(n2)
• Cubic time: O(n3)

…

• Exponential time: O(kn)

• O(nk) is often called polynomial time

7/31/2003 (c) 2001-3, University of Washington 16-26

Rule of Thumb
• If the algorithm has polynomial time or better: practical

• typical pattern: examining all data, a fixed number of times

• If the algorithm has exponential time: impractical
• typical pattern: examine all combinations of data

• What to do if the algorithm is exponential?
• Try to find a different algorithm
• Some problems can be proved not to have a polynomial

solution
• Other problems don't have known polynomial solutions,

despite years of study and effort
• Sometimes you settle for an approximation

The correct answer most of the time, or an almost-correct answer all of the time

7/31/2003 (c) 2001-3, University of Washington 16-27

Big-O Arithmetic
• For most common functions, comparison can be

enormously simplified with a few simple rules of thumb
• Memorize complexity classes in order from smallest to

largest: O(1), O(log n), O(n), O(n log n), O(n2), etc.
• Ignore constant factors

300n + 5n4 + 6 + 2n = O(n + n4 + 2n)

• Ignore all but highest order term
O(n + n4 + 2n) = O(2n)

7/31/2003 (c) 2001-3, University of Washington 16-28

Analyzing List Operations (1)
• We can use O() notation to compare the costs of

different list implementations
• Operation Dynamic Array Linked List

• Construct empty list

• Size of the list

• isEmpty

• clear

7/31/2003 (c) 2001-3, University of Washington 16-29

Analyzing List Operations (2)
• Operation Dynamic Array Linked

List
• Add item to end of list

• Locate item (contains, indexOf)

• Add or remove item once it
has been located

7/31/2003 (c) 2001-3, University of Washington 16-30

Wait! Isn’t this totally bogus??
• Write better code!!

• More clever hacking in the inner loops
(assembly language, special-purpose hardware in extreme cases)

• Moore’s law: Speeds double every 18 months
• Wait and buy a faster computer in a year or two!

• But …

CSE143 Sp03 16-6

7/31/2003 (c) 2001-3, University of Washington 16-31

How long is a Computer-Day?

• If a program needs f(n) microseconds to solve some
problem, how big a problem can it solve in a day?
• One day = 1,000,000*24*60*60 = 9*1010 (aprox)
f(n) n such that f(n) = one day
n 9 * 1010

5n 2 * 1010

n log2n 3 * 109

n2 3 * 105

n3 4 * 103

2n 36

7/31/2003 (c) 2001-3, University of Washington 16-32

Speed Up The Computer by 1,000,000

• Suppose technology advances so that a future
computer is 1,000,000 fast than today's
f(n) original n speedup on future machine
n 9 * 1010 million times larger
5n 2 * 1010 million times larger
n log2n 3 * 109 60,000 times larger
n2 3 * 105 1,000 times larger
n3 4 * 103 100 times larger
2n 36 +20

7/31/2003 (c) 2001-3, University of Washington 16-33

Practical Advice For Speed Lovers
• First pick the right algorithm and data structure

• Implement it carefully, insuring correctness

• Then optimize for speed – but only where it matters
• Constants do matter in the real world
• Clever coding can speed things up, but the result is likely to be

harder to read, modify
• Use tools to find hotspots – concentrate on these

“Premature optimization is the root of all evil”

– Donald Knuth

7/31/2003 (c) 2001-3, University of Washington 16-34

"It is easier to make a
correct program efficient
than to make an efficient

program correct"
-- Edsgar Dijkstra

More Advice…

7/31/2003 (c) 2001-3, University of Washington 16-35

Summary
• Analyze algorithm sufficiently to determine complexity
• Compare algorithms by comparing asymptotic

complexity
• For large problems, an asymptotically faster algorithm

will always trump clever coding tricks
• Optimize/tune only things that actually matter, once

you’ve picked the best algorithm

7/31/2003 (c) 2001-3, University of Washington 16-36

Computer Science Note
• Algorithmic complexity theory is one of the key intellectual

contributions of Computer Science
• Typical problems

• What is the worst/average/best-case performance of an algorithm?
• What is the best complexity bound for all algorithms that solve a particular

problem?

• Interesting and (in many cases) complex, sophisticated math
• Probabilistic and statistical as well as discrete

• Still some key open problems
• Most notorious: P ?= NP

