
CSE143 Sp03 12-1

7/23/2003 (c) 2001-3, University of Washington 12-1

CSE 143

Streams and Files

Reading: Sec. 19.1, Appendix A2

7/23/2003 (c) 2001-3, University of Washington 12-2

Overview
• Topics

• Data representation – bits and bytes -- Unicode
• Streams – communicating with the outside world
• Streams and files in Java
• Streams and exceptions
• Other stream classes

7/23/2003 (c) 2001-3, University of Washington 12-3

GREAT IDEAS IN COMPUTER GREAT IDEAS IN COMPUTER GREAT IDEAS IN COMPUTER GREAT IDEAS IN COMPUTER
SCIENCESCIENCESCIENCESCIENCE

REPRESENTATION VS. RENDERING

7/23/2003 (c) 2001-3, University of Washington 12-4

Data Representation
• Underneath it’s all bits (binary digits – 0/1)
• Byte – group of 8 binary digits

• Smallest addressable unit of memory in many computers

• Meaning depends on interpretation
• Non-negative base-10 integers represented as base-2 integers
• Characters formats include ASCII (1 byte) or Unicode (2 byte)

encodings
01000001 = integer 65 = ASCII ‘A’

Unicode 'A' is 0000000001000001
00111111 = integer 63 = ASCII ‘?’
00110110 = integer 54 = ASCII ‘6’

• But it’s still just bits

CSE143 Sp03 12-2

7/23/2003 (c) 2001-3, University of Washington 12-5

Representation of Primitive Java Types
• Boolean – 1 byte (0 = false; 1 = true)
• Integer types
•byte – 1 byte (-128 to 127)
•short – 2 bytes (-32768 to 32767)
•int – 4 bytes (-2147483648 to 2147483647)
•long – 8 bytes (-9223372036854775808 to 9223372036854775807)

• Floating-point (real number) types
•float – 4 bytes; approx. 6 decimal digits precision (~1038)
•double – 8 bytes; approx. 15 decimal digits precision (~10308)

• Character type
•char – 2 bytes; Unicode characters w/decimal values 0 to 65535

7/23/2003 (c) 2001-3, University of Washington 12-6

Unicode

• International standard
• Java was first major language to adopt

• Intended to include all the world’s writing systems
• Characters are 2 bytes (16 bits)

• Given by two Hex digits, e.g. 4EB9

• Specifications: www.unicode.org
• Unicode 3.1 (2001) introduced characters outside the

original 16-bit range
• Not yet well-supported

7/23/2003 (c) 2001-3, University of Washington 12-7

Input and Output
• Communicating with the outside world

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk (Files)

Keyboard mouse

7/23/2003 (c) 2001-3, University of Washington 12-8

Streams
• Java model of communication: streams

• Sequence of data flowing from a source to a program, or from a
program to a destination (sink)

• Files are common sources and sinks

input
(source)

program
output
(sink)

stream stream

CSE143 Sp03 12-3

7/23/2003 (c) 2001-3, University of Washington 12-9

Stream after Stream...
• Stream are a useful model for processing data along the way,

in a pipeline

input
file

(source)
decompressor

English-
to-

French
translator

output
file

(sink)
encryptor

7/23/2003 (c) 2001-3, University of Washington 12-10

Streams vs. Files
• Many languages don’t make clear distinction

• Programmers, too!

• In Java:
• “file” is the collection of data, managed by the operating

system
• “stream” is a flow of data from one place to another

• A stream is an abstraction for data flowing from or to a
file, remote computer, URL, hardware device, etc.

7/23/2003 (c) 2001-3, University of Washington 12-11

Java Stream Library
• Huge variety of stream classes in java.io.*
• The "stream zoo"

• Some are data sources or sinks
• Others are converters

take data from a stream and transform it somehow to produce a stream with
different characteristics

• Highly modular
• Lots of different implementations all sharing a common

interface; can be mixed and matched and chained easily
• Great OO design example, in principle
• In practice, it can be very confusing (simple I/O is messy)

7/23/2003 (c) 2001-3, University of Washington 12-12

Common Stream Processing Pattern
• Basic idea the same for input & output

// input // output
open a stream open a stream

while more data { while more data {
read & process next data write data to stream

} }
close stream close stream

CSE143 Sp03 12-4

7/23/2003 (c) 2001-3, University of Washington 12-13

Opening & Closing Streams
• Before a stream can be used it must be opened

• Create a stream object and connect it to source or destination
of the stream data

• Often done implicitly as part of creating stream objects

• When we’re done with a stream, it should be closed
• Cleans up any unfinished operations, then breaks the

connection between the program and the data
source/destination

7/23/2003 (c) 2001-3, University of Washington 12-14

Java Streams
• 2 major families of stream classes
• Byte streams – read/write byte values

• Corresponds to physical data – network and disk I/O streams
• Abstract classes: InputStream and OutputStream

• Character streams – read/write char values
• Added in Java 1.1
• Primary (Unicode) text input/output stream classes
• Abstract classes: Reader and Writer
• Footnote: System.in and System.out should be character streams, but are byte

streams for historical reasons (existed before Java 1.1, and remain unchanged to
preserve backward compatibility)

7/23/2003 (c) 2001-3, University of Washington 12-15

Character Input Streams

7/23/2003 (c) 2001-3, University of Washington 12-16

Byte Output Streams

CSE143 Sp03 12-5

7/23/2003 (c) 2001-3, University of Washington 12-17

Streams, Errors, and Exceptions
• Lots can go wrong in the pipeline between source and

destination!
• Detecting and handling errors is important
• Some methods signal errors with special return values

• For example, null

• Most often, errors are signaled by throwing exceptions
• Normally throws a specific subclass of IOException
• Subclasses depending on the actual error

• IOException is “checked”
• (Review question: what does a “checked” exception imply?)

7/23/2003 (c) 2001-3, University of Washington 12-18

Basic Reader/Writer Operations
• Reader

int read(); // return Unicode value of next character;
// return -1 if end-of-stream

int read(char[] cbuf); // read several characters into array;
// return -1 if end-of-stream

void close(); // close the stream

• Writer
void write(int c); // write character whose Unicode value is c

void write(char[] cbuf);// write array contents
void write(String s); // write string
void close(); // close the stream

• To convert Unicode int to char, or vice versa: use a cast

7/23/2003 (c) 2001-3, University of Washington 12-19

Text Files vs Char Data

• Most of the world’s English/European text files do not
use Unicode
• use 8-bit characters: ASCII and variations of ASCII
• Internal to Java, char data is always 2-byte Unicode
• Java Reader deals only with Unicode

• Big problem: how to read and write normal (ASCII) text
files in Java?

• Solution: stream classes which adapts 8-bit chars to
Unicode

7/23/2003 (c) 2001-3, University of Washington 12-20

File Readers and Writers
• To read a (Unicode) text file (not a binary data file),

instantiate FileReader
• A subclass of Reader: implements read and close operations
• Constructor takes the name of the file to open and read from

• To write to a text file, instantiate FileWriter
• A subclass of Writer: implements write and close operations
• Constructor takes the name of the file to open/create and

overwrite (can also append to an existing file using a different
constructor)

CSE143 Sp03 12-6

7/23/2003 (c) 2001-3, University of Washington 12-21

Notes on FileReader
• Big convenience: automatic conversion of the

characters to/from Unicode
• in most cases, depending on system defaults

• Still one big drawback: Does not read Strings
• only individual chars or arrays of chars
• Just like Reader

• FileReader is sometimes called a "convenience class"
• You can get exactly the same result by combining other

existing classes
In this case: FileInputStream and InputStreamReader

7/23/2003 (c) 2001-3, University of Washington 12-22

Copy a Text File, One Character at a Time
public void copyFile(String sourceFilename, String destFilename)

throws IOException {

FileReader inFile = new FileReader(sourceFilename);
FileWriter outFile = new FileWriter(destFilename);
int ch = inFile.read();
while (ch != -1) {

outFile.write(ch);
System.out.println("The next char is \'" + (char)ch + "\'"); // why \' ?
ch = inFile.read();

}
inFile.close();
outFile.close();

}

7/23/2003 (c) 2001-3, University of Washington 12-23

Interlude: Where is the File?

• In the previous slide, we opened the files with
FileReader inFile = new FileReader(sourceFilename);
FileWriter outFile = new FileWriter(destFilename);

• The file names could be complete paths like
“c:\Documents and Settings\J User\story.txt”, but…
• Not portable – different operating systems have different file

naming conventions
• Not convenient – what if we move the document?

• Would like to be able to use a name like “story.txt” to
open the file
• But if we do, where should we put the file?

7/23/2003 (c) 2001-3, University of Washington 12-24

File Directories

• When we use a simple file name
FileReader inFile = new FileReader(“story.txt”);

Java looks for that file in the “current directory”
• Current directory

• If the program is executed from a command-line prompt, it is
the current directory when the “java” command is entered

• If it is executed by DrJava, BlueJ, or other development tools, it
likely is not

• Is there a portable scheme way to find the file, assuming it’s in
the same directory or jar file as the main program .class file?

Yes – but you might not really want to see it

CSE143 Sp03 12-7

7/23/2003 (c) 2001-3, University of Washington 12-25

Finding Files (optional)

• The industrial-strength solution is to use a class loader
method that will search all directories it knows about
• Includes the directory or jar file containing the program’s .class

files, Java standard libraries, any additional libraries on the
classpath, etc.

• Ready?
URL url = getClass().getClassLoader().getResource(fileName);

• If url!=null, then it can be used to open the file (also works for
other resources like images and icons)

• Credit: Found on bluej.org; see their tip #10 for more details
• No, this won’t be on the test

7/23/2003 (c) 2001-3, University of Washington 12-26

Opening Files Using File Dialogs

• Easy, portable solution for our purposes is JFileChooser
• in package javax.swing

• Lots (tons) of options, but basic use is quite simple
JFileChooser chooser = new JFileChooser();
int result = chooser.showOpenDialog(null);
if (result == JFileChooser.APPROVE_OPTION) {

File inFile = chooser.getSelectedFile();
System.out.println("Input file selected is " + inFile);

}

• The int results of the show…Dialog methods indicate whether
the dialog was dismissed with ok, cancel, or something else

7/23/2003 (c) 2001-3, University of Washington 12-27

More Efficient I/O Through Buffering
• I/O transfer is more efficient when bytes are transferred

many at a time instead of one at a time
• We say the data is "buffered"
• I/O transfer speeds are very slow compared to memory and

CPU speeds

• Java classes BufferedReader and BufferedWriter allow
for this

• Reality check: The actual efficiency gains are modest or
non-existent
• Modern operating systems and devices do lots of buffering

anyway

7/23/2003 (c) 2001-3, University of Washington 12-28

BufferedReader and BuffferedWriter
• Provide buffering of input/output characters

• which may provide a performance improvement

• Provide a very real programming convenience: methods
to read or write a line at a time
• instead of one character at a time

CSE143 Sp03 12-8

7/23/2003 (c) 2001-3, University of Washington 12-29

BufferedReader
• A converter stream that performs chunking of input
• BufferedReader constructor takes any kind of Reader as

an argument -- can make any read stream buffered
• BufferedReader supports standard Reader operations --

clients don't have to change to benefit from buffering
• Key addition: provides a portable readLine()

• String readLine(); // return an entire line of input; or null if
// end-of-stream reached

• [handles the complexities of how end-of-line is represented on
different systems]

7/23/2003 (c) 2001-3, University of Washington 12-30

BufferedWriter
• BufferedWriter: a converter stream that performs

chunking on writes
• BufferedWriter constructor takes any kind of Writer as

an argument
• BufferedWriter supports standard Writer operations
• Also supports newLine()

• void newLine(); // write an end-of-line character

7/23/2003 (c) 2001-3, University of Washington 12-31

Copy a Text File, One Line at a Time
public void copyFile(String sourceFilename, String destFilename)

throws IOException {

BufferedReader inFile = new BufferedReader(new FileReader(sourceFilename));

BufferedWriter outFile = new BufferedWriter(new FileWriter(destFilename));
String line = inFile.readLine();

while (line != null) {
outFile.write(line);
outFile.newLine();

System.out.println("The next line is \"" + line + "\"");

line = inFile.readLine();

}
inFile.close();

outFile.close();

}

7/23/2003 (c) 2001-3, University of Washington 12-32

PrintWriter
• PrintWriter is another converter for a write stream
• Adds print & println methods for primitive types, strings,

objects, etc., just as we've used for System.out
• Does not throw exceptions (to make it more convenient

to use)
• Optional 2nd boolean parameter in constructor to request

output be flushed (force all output to actually appear)
after each println
• Useful for interactive consoles where messages need to appear

right away

CSE143 Sp03 12-9

7/23/2003 (c) 2001-3, University of Washington 12-33

Copy a Text File, Using PrintWriter
public void copyFile(String srcFilename, String destFilename)

throws IOException {
BufferedReader inFile = new BufferedReader(new FileReader(srcFilename));
PrintWriter outFile =

new PrintWriter(new BufferedWriter(new FileWriter(destFilename)));
String line = inFile.readLine();
while (line != null) {

outFile.println(line);
System.out.println("The next line is \"" + line + "\"");
line = inFile.readLine();

}
inFile.close();
outFile.close();

}

7/23/2003 (c) 2001-3, University of Washington 12-34

StringReader and StringWriter
• Strings as streams(!)
• StringReader: construct character stream from a String

StringReader inStream = new StringReader("the source");

// could now write inStream to a file, or somewhere else

• StringWriter: write stream to a String
StringWriter outStream = new StringWriter();
// now write onto outStream, using outStream.write(…), outStream.print(…), etc.
String theResult = outStream.toString();

7/23/2003 (c) 2001-3, University of Washington 12-35

Binary Streams
• For processing binary data (encoded characters,

executable programs, other low-level data), use
InputStreams and OutputStreams

• Operations are similar to Reader and Writer operations
• Replace char with byte in read; no write(String)

• Many analogous classes to Readers and Writers:
• FileInputStream, FileOutputStream
• BufferedInputStream, BufferedOutputStream
• ByteArrayInputStream, ByteArrayOuputStream
• ObjectInputStream, ObjectOutputStream -- read & write whole

objects!

7/23/2003 (c) 2001-3, University of Washington 12-36

Conversion from Binary to Text Streams
• InputStreamReader: creates a Reader from an

InputStream
// System.in is of type InputStream
Reader inStream = new InputStreamReader(System.in);
// now can treat it nicely as a character stream

• OutputStreamWriter: creates a Writer from an
OutputStream

// System.out is of type OutputStream
Writer outStream = new OutputStreamWriter(System.out);
// now can treat it nicely as a character stream

CSE143 Sp03 12-10

7/23/2003 (c) 2001-3, University of Washington 12-37

Network Streams
• Import java.net.*
• Use URL to create a name of something on the web
• Use openStream() method to get a InputStream on the contents of

the URL
URL url = new URL("http://www.cs.washington.edu/index.html");
InputStream inStream = url.openStream();
… // now read from inStream

• Use openConnection() and URLConnection methods to get more
control

URLConnection connection = url.openConnection();
OutputStream outStream = connection.getOutputStream();
… // now write to outStream (assuming target url allows writing!)

• Socket class for even more flexible network reading & writing

7/23/2003 (c) 2001-3, University of Washington 12-38

Other Possible Kinds of Stream Converters
• Compression
• Encryption
• Filtering
• Translation
• Statistics gathering
• Security monitoring
• Routing/Merging
• Reducing Bandwidth (Size & Detail), e.g. of graphics or sound

• "lossy compression"

• Noise reduction, image sharpening, …
• Many, many more…

7/23/2003 (c) 2001-3, University of Washington 12-39

Summary

• Java stream libraries
• Comprehensive, flexible, easy to compose multiple streams in

a chain
• But hard to do simple things

• What to take away
• BufferedReader and readLine() for text input
• PrintWriter and print()/println() for text output
• Look for end of file
• JFileChooser to select files when opening
• close() when done

