
CSE143 Sp03 11-1

7/23/2003 (c) 2001-3, University of Washington 11-1

CSE 143 Java

Exception Handling

Reading: Ch. 18

7/23/2003 (c) 2001-3, University of Washington 11-2

Overview
• Topics

• Exceptions (review)
• Exception handling
• Use of exceptions

7/23/2003 (c) 2001-3, University of Washington 11-3

Exceptions as Error Signals (Review)
• When we discussed programming by contract, we

described how to throw an exception to indicate an error
(usually an invariant being violated)

if (argument == null) {
throw new NullPointerException();

}

if (index < 0 || index > size) {

throw new IndexOutOfBoundsException(“No such item”);
}

7/23/2003 (c) 2001-3, University of Washington 11-4

Exception Handling
• Idea: exceptions can represent unusual events that

client could handle
• Finite data structure is full; can’t add new element
• Attempt to open a file failed

• Problem: the object that detects the error doesn’t (and
probably shouldn’t) know how to handle it

• Problem: the client code could handle the error, but isn’t
in a position to detect it

• Solution: object detecting an error throws an exception;
client code catches and handles it

CSE143 Sp03 11-2

7/23/2003 (c) 2001-3, University of Washington 11-5

return vs throw
• return and throw both end the execution of a method
• return: sends control back to the point where the

method was called
• throw: sends control back to a specially designated

point, if one exists
• can call this the "catch point"

• The return point and the catch point are never the same
• never, ever

7/23/2003 (c) 2001-3, University of Washington 11-6

try-catch
• Basic syntax

try {
somethingThatMightBlowUp();
// return point for somethingThatMightBlowUp
additional stuff;

} catch (Exception e) {
recovery code – e, the exception object, is a “parameter”

}

• Semantics (control flow)
• Execute statements of try block
• If an exception is thrown by a called method:

called method terminates
catch block executes

7/23/2003 (c) 2001-3, University of Washington 11-7

catch Block
• catch is executed only if an exception occurs
• catch block may contain any statements whatsoever
• Usually catch block code will:

• handle the error so the the method can continue
• ignore the error (risky!)
• Re-throw the exception

7/23/2003 (c) 2001-3, University of Washington 11-8

try-catch-catch-catch...
• Can have several catch blocks

try {
attemptToReadFile();

} catch (FileNotFoundException e) {
…

} catch (IOException e) {
…

} catch (Exception e) {
…

}

• Semantics: actual exception type compared to exception
parameter types in order until a compatible match is found

• No match – exception propagates to calling method

CSE143 Sp03 11-3

7/23/2003 (c) 2001-3, University of Washington 11-9

What if There is no try/catch?
• Suppose called method somethingThatMightBlowUp is

not in a try/catch block:
somethingThatMightBlowUp();
// return point for somethingThatMightBlowUp()
additional stuff;

• What if it throws an exception?
• Called method terminates
• Calling method also terminates
• The exception is automatically rethrown, to the method which

called this one
• If there is a catch block there, fine.
• Otherwise, the process continues back up the chain

7/23/2003 (c) 2001-3, University of Washington 11-10

Exception Objects In Java

• Exceptions are regular objects in Java
• Subclasses of the predefined Throwable/Exception

• Some predefined Java exception classes:
• RuntimeException (a very generic kind of exception)
• NullPointerException
• IndexOutOfBoundsException
• ArithmeticException (e.g. for divide by zero)
• IllegalArgumentException (for any other kind of bad argument)

• Most exceptions have constructors that take a String
argument

7/23/2003 (c) 2001-3, University of Washington 11-11

Throwable/Exception Hierarchy

Throwable

Error Exception

Runtime Exceptions <other exceptions>

Throwable

Error Exception

Runtime Exceptions <other exceptions>

Throwable

Error Exception

Runtime Exceptions <other exceptions>

Throwable

Error Exception

Runtime Exceptions <other exceptions>

7/23/2003 (c) 2001-3, University of Washington 11-12

Exceptions as Part of Method Specifications
• Generally a method must either handle an exception or

declare that it can potentially throw it
void readSomeStuff() {

try {
readIt();

catch (IOException e) {

//handle
}

or
void readSomeStuff() throws IOException { //declare

readIt();
}

CSE143 Sp03 11-4

7/23/2003 (c) 2001-3, University of Washington 11-13

Checked vs Unchecked Exceptions
• Some types of exceptions can occur almost anywhere in any

method
• E.g. NullPointerException, IndexOutOfBoundsException, etc.

• Others are fairly specialized
• MalformedURLException, FileNotFoundException, etc.

• Java exceptions are categorized as checked or unchecked
• Unchecked: things like NullPointerException
• Checked: things like IOException

• By definition:
• unchecked exceptions are subclasses of RuntimeException
• checked exceptions are all other exceptions
• Footnote: The class Error is not checked

7/23/2003 (c) 2001-3, University of Washington 11-14

Checked vs Unchecked: The Rule
• Rule: method must either handle or declare all checked

exceptions it might encounter
• "handle" means "have a catch block for it"
• "declare" means "have a throws clause for it"

• Do not need to declare anything about unchecked
exceptions

• "Declaring an exception" means having a throws clause
in the method header

• Compiler will enforce this

7/23/2003 (c) 2001-3, University of Washington 11-15

Throwable/Exception Hierarchy

Throwable

Error Exception

RuntimeExcept ion

ArithmeticException

NullPointerException

IllegalArgumentException

[checked]

InsufficientFundsException

[checked]

[checked]

[checked]
IOException

[checked]
FileNotFoundException

[checked]

7/23/2003 (c) 2001-3, University of Washington 11-16

Debugging Tip: Stack Traces
• Unhandled exception cause a "stack trace" to be printed
• Lists all active methods

• First: the method where the exception occurred
• Next: the method that called that method
• Etc. etc.

• Stack trace entries also shows line number of each call
• Useful debugging information!

CSE143 Sp03 11-5

7/23/2003 (c) 2001-3, University of Washington 11-17

Guidelines: Exception Handling
• Intended for unusual or unanticipated conditions

• Relatively expensive if thrown (free if not used)
• Can lead to obfuscated code if used too much

• Guideline: Use in situations where you are in a position
to detect an error, but client code would know how to
react

• Guideline: Often appropriate in cases where a method’s
preconditions are met but the method isn’t able to
successfully establish postconditions (i.e., method can’t
do what is requested through no fault of the caller)

