
CSE143 Sp03 08-1

4/30/2003 (c) 2001-3, University of Washington 08-1

CSE 143 Java

Event-Driven Programming

Reading: Chs. 19-20, particularly Sec. 19.4

4/30/2003 (c) 2001-3, University of Washington 08-2

Overview

• Topics
• Event-driven programming (review)
• Events in Java
• Event listeners
• Buttons
• Mice

4/30/2003 (c) 2001-3, University of Washington 08-3

Event-Driven Programming (Review)
• Idea: program initializes itself then accepts events in whatever

random order they occur
• Kinds of events

• Mouse move/drag/click, Keyboard, Touch screen, Joystick, game controller
• Window resized or components changed
• Activity over network or file stream
• Timer interrupt

• First demonstrated in the 1960s(!); major developments at Xerox
PARC in the 1970s (Alto workstation, Smalltalk, Xerox Star)

• Appeared outside research community in Apple Macintosh (1984)

4/30/2003 (c) 2001-3, University of Washington 08-4

Events in Java

• An object that is interested in an event must be
registered with the object (user interface component or
other) that generates the event
• An object may be registered to listen for many kinds of events

generated by many other objects
• There may be many listeners registered to listen for particular

kinds of events from a single object

• When an event occurs, all registered listeners are
notified by calling the appropriate method in the listener
objects

4/30/2003 (c) 2001-3, University of Washington 08-5

Event Objects
• An event is represented by an event object

• AWT/Swing events are subclasses of AWTEvent. Examples:
ActionEvent – button pressed
KeyEvent – keyboard input
MouseEvent – mouse move/drag/click/button press or release

• Event objects contain information about the event
• User interface object that triggered the event
• Other information appropriate for the event. Examples:

ActionEvent – text string describing button (if from a button)
MouseEvent – mouse coordinates of the event

• All in java.awt.event – need to import this to handle
events

4/30/2003 (c) 2001-3, University of Washington 08-6

Event Listeners
• An event listener must implement the appropriate

interface for the events it wishes to receive
• ActionListener, KeyListener, MouseListener (buttons),

MouseMotionListener (move/drag), others …

• When the event occurs, the appropriate method of the
object is called
• actionPerformed, keyPressed, keyReleased, keyTyped,

mouseClicked, MouseDragged, etc. etc. etc.
Reminder – because these are part of an Interface, you can't change their
signatures.

• An event object describing the event is supplied as a parameter
to the receiving method

CSE143 Sp03 08-2

4/30/2003 (c) 2001-3, University of Washington 08-7

A First Example – Simple Button Listener

• Idea: Create a JPanel extension with a single button in it
• Create a listener object to receive clicks on the button

and print a message when events happen
• Register the listener object with the button

4/30/2003 (c) 2001-3, University of Washington 08-8

Button Listener

• Simplest part of setup
• Needs to implement ActionListener interface and

actionPerformed method declared in that interface
• Doesn’t do much – just gets the action command string

from the event object e and prints it
public class ButtonListener implements ActionListener {

/** Respond to events generated by the button. */

public void actionPerformed(ActionEvent e) {

System.out.println(e.getActionCommand());

}

}

4/30/2003 (c) 2001-3, University of Washington 08-9

Button Panel

• This panel contains the button, when constructed, it
• creates the button and a listener
• adds the button to the panel
• registers the listener with the button

public class ButtonDemo extends JPanel {

/** Construct a new ButtonDemo object */

public ButtonDemo() {

JButton button = new JButton("Hit me!");

button.setActionCommand("OUCH!"); // optional - default is button text

button.addActionListener(new ButtonListener());
add(button);

}

4/30/2003 (c) 2001-3, University of Washington 08-10

Identifying the Button

• Only one button in this example, but what if the listener
was registered for ActionEvents from multiple buttons?

• Answer: use method getActionCommand() on the event
object – returns a string
• Default value is text in the button, but can set it with

setActionCommand on the button object
(Good idea so program won’t break if button text changed later – maybe by
translating to another language)

4/30/2003 (c) 2001-3, University of Washington 08-11

Second Example: Mice

• A mouse generates an event every time it twitches
• Every move, every button press, …

• Sometimes it makes sense to handle every mouse
moved/dragged event; other times it’s just noise

• Key interfaces associated with mouse events:
• MouseListener – click, press, release, enter region, exit region
• MouseMotionListener – mouse moved or dragged

• MouseListener and MouseMotionListener methods
receive a MouseEvent parameter
• Contents: location of the mouse event, which modifier keys

were held down, which buttons were pressed, etc.

4/30/2003 (c) 2001-3, University of Washington 08-12

Example: Mouse Clicks
public class Mouser extends JPanel implements MouseListener {

/** Constructor – register this object to listen for mouse events */

Mouser() {

super();

addMouseListener(this);
}

/** Process mouse click */

public void mouseClicked(MouseEvent e) {

System.out.println(“mouse click at x = ” + e.getX() + “ y = “ e.getY());

}

• Also need to implement the other events in MouseListener

• Note that this JPanel extension registers itself to listen for the mouse events

CSE143 Sp03 08-3

4/30/2003 (c) 2001-3, University of Washington 08-13

Interactive Bouncing Balls

• Idea: add some interaction to the bouncing ball
simulation/animation

• First change: add buttons in a panel at the bottom to
pause and resume the simulation

• Steps
• Create a new JPanel containing the buttons
• Create a second JPanel BallSimControl containing the original

graphics view on top and the button JPanel beneath
• Add this to the top-level JFrame

4/30/2003 (c) 2001-3, University of Washington 08-14

Button Panel

• In BallSimControl (an extended JPanel) constructor
JButton pause = new JButton("pause");

JButton resume = new JButton("resume");
JButton stop = new JButton("stop");

JPanel buttons = new JPanel();

buttons.add(pause);

buttons.add(resume);

buttons.add(stop);

add(buttons, BorderLayout.SOUTH);

4/30/2003 (c) 2001-3, University of Washington 08-15

Handling Button Clicks

• Who should handle the pause/resume button clicks?
• Not the SimModel object – shouldn’t know about views

• New class: SimButtonListener
• Code in BallSimControl

// set up listener for the buttons

buttonListener = new SimButtonListener();

pause.addActionListener(buttonListener);

resume.addActionListener(buttonListener);

stop.addActionListener(buttonListener);;

4/30/2003 (c) 2001-3, University of Washington 08-16

Listener Object
class SimButtonListener implements ActionListener {
private SimModel world; // the model
/** Process button clicks by turning the simulation on and off */
public void actionPerformed(ActionEvent e) {

if (e.getActionCommand().equals("pause")) {
world.pause();

} else if (e.getActionCommand().equals("resume")) {
world.resume();

} else if (e.getActionCommand().equals("stop")) {
world.stop();

}
}

}
• Question: How does the listener know what SimModel object to notify?
• Answer: One hack is to implement a “notify” in SimButtonListener and store

a reference to the model in an instance variable when notified

4/30/2003 (c) 2001-3, University of Washington 08-17

Interactive Bouncing Balls (cont.)

• Second change: when the mouse is clicked in the
window, add a new bouncing ball with random size,
direction, and color

• Steps
• Create a SimMouseListener class to listen for the clicks
• Register a listener object to listen for clicks on the view pane

• Same complications as with the buttons – the listener
needs to know the model it interacts with and (to
construct the balls) how big the world is for this
particular example

4/30/2003 (c) 2001-3, University of Washington 08-18

Initializing the Mouse Listener

• In BallSimControl
// set up listener for mouse clicks on the view

mouseListener = new SimMouseListener(viewSize);
viewPane.addMouseListener(mouseListener);

CSE143 Sp03 08-4

4/30/2003 (c) 2001-3, University of Washington 08-19

Mouse Listener Object
/** Process mouse click by adding a new ball to the simulation at the location

* of the click with a random color, size, and velocity */

public void mouseClicked(MouseEvent e) {

world.add(randomBall(e.getX(), e.getY()));

}

/** Create a new ball with random color, size, and velocity */

public Ball randomBall(int x, int y) {

return new Ball(…);

}

4/30/2003 (c) 2001-3, University of Washington 08-20

Summary So Far

• Event-driven programming
• Event objects
• Event listeners – anything that implements the relevant

interface
• Must register with object generating events as a listener

• Listener objects – handle events by passing them along
to other objects

4/30/2003 (c) 2001-3, University of Washington 08-21

Evaluation

• So far, we’ve implemented listeners as instances of
separate stand-alone classes

• Issues
• Relatively simple, fairly easy to understand, but
• Messy to provide listener with access to necessary data
• Creates unnecessary top-level classes
• Also, had to implement all MouseListener methods even

though we only wanted to process clicks

4/30/2003 (c) 2001-3, University of Washington 08-22

Coming Attractions

• Solutions
• Event adapter classes – empty implementations of all methods;

extend and override what you want
• Nested (inner) classes – which can be private
• Anonymous inner classes – create an extended adapter class

without having to give it a name

