
01-1

7/7/2003 (c) University of Washington 01-1

CSE 143 Java

Class Packaging

Reading in N&H: Ch. 3, 4 (scattered)

7/7/2003 (c) University of Washington 01-2

Abstractions for Grouping Classes

• The class is the basic unit of modeling and program
construction

• Most applications consist of more than one class
• From a handful to hundreds of classes

• There should be ways to group related classes
• Three common levels of grouping

• Within a file

• Within a package
• Within a project

7/7/2003 (c) University of Washington 01-3

Grouping Classes Within a .java file

• A single .java file may contain multiple classes
BUT at most one public class

• If a file contains a public class...
the file name must match the class name (case sensitive)

• Normal practice: put only very tightly related classes in the same file
When in doubt, use more than one file

• Compiler will still generate a separate .class file for each class in a
.java file

• A class can be nested (defined) inside another class
Called “inner classes” – we will not use these in CSE143 at present

7/7/2003 (c) University of Washington 01-4

Packages
• Packages provide another way to group collections of related

classes and interfaces

• A package defines a separate namespace to help avoid
name conflicts
• Can reuse common names in different packages (List, Set, …)

• Provides a way of hiding classes needed to implement the
package but that should not be used by client code

01-2

7/7/2003 (c) University of Washington 01-5

"Default" Package
• A type does not need to be in a named package
• There is an “anonymous” package for classes not placed in a

specific package – you’ve been using this all along

7/7/2003 (c) University of Washington 01-6

Naming Packages and Types
• NB: for brevity, "type" here means "class or inface"
• Every class and interface has a fully qualified name: its package

name, a “.”, and its type name
java.util.ArrayList
java.awt.Rectangle
java.awt.geom.Ellipse2D
org.apache.xerces.parsers.SAXParser

• Each type also has a simple name
Color, ArrayList, Rectangle

• Can always refer to a type using its fully qualified name
• Can generally use import declarations to refer to types by their simple

names
• Use import statements to make the package (and its type names)

available in a program

7/7/2003 (c) University of Washington 01-7

Import Declarations (1)
• Can import a single type by giving its fully qualified name

import java.awt.Color;

• Can import all types in a package using the package name
import java.util.*;

• Have to import each package individually – can’t import
several in a single import declaration

• Example
import java.*;

only imports top-level names in java.*
• To import, e.g., ArrayList, need to have (also)

import java.util.*

7/7/2003 (c) University of Washington 01-8

Import Declarations (2)
• An imported type can be referenced by its simple name,

provided that reference is unique
import java.util.*;
ArrayList theList = new ArrayList();

• Example of non-unique reference – both java.awt and
uwcse.graphics contain a class Rectangle

import java.awt.*;
import uwcse.graphics.*;

Rectangle rect = new Rectangle(…); // error – ambiguous
java.awt.Rectangle r = new java.awt.Rectangle(…) // ok; not ambiguous

01-3

7/7/2003 (c) University of Washington 01-9

Creating Java Packages

• . Use the Java package statement
• package statement must be first non-comment statement in the

.java file
• All .java files in a package must have identical package statements

• Packages vs directories
• All .java files of a package must be in the same directory
• The directory must have the same name as the package (case

sensitive)

• Packages are often nested
• dot notation: package, slash notation: director

7/7/2003 (c) University of Washington 01-10

Package Structure

• Packages can be nested in the usual directory structure

• This example contains the packages:
java

java.awt
java.utils
java.io etc. java

utils io security
net

awt

HashMap ArrayList

LinkedList

7/7/2003 (c) University of Washington 01-11

Packages and import Statement

• What does import java.util.ArrayList; mean?
1a. “There is a package named java which contains a package named util which
contains a class named ArrayList (and I’m using that class)” OR
1b. “There is a directory named java which contains a directory named util which
contains a class named ArrayList”
2. I intend to use ArrayList

java

utils io security
net

awt

HashMap ArrayList

LinkedList
7/7/2003 (c) University of Washington 01-12

Some Standard Packages
• The standard Java libraries contain thousands of classes

grouped into dozens of packages. A few common ones:
• java.lang – core classes; imported automatically everywhere, don’t

need an import declaration
includes Math, Integer, Double, Char, etc. – lots of useful things for standard
types

• java.util – collections, date/time, random number generators, etc.

• java.io – input/output streams, files

• java.net – network I/O, sockets, URLs

• java.awt – original graphical user interface (GUI)
• javax.swing – extension of awt, more sophisticated GUI

01-4

7/7/2003 (c) University of Washington 01-13

Java Standard Library Statistics

Version #packages # classes/interfaces
1.0 8 212
1.1 23 504

1.2 60 1781
1.3 77 2130
1.4 136 3020

Source: The Java Developer’s Almanac 1.4, Patrick Chan

No, this will not be on the test

7/7/2003 (c) University of Washington 01-14

Class Paths

• The Java VM must know where to find classes at run-time
• The class path is a list of the directories which the JVM will

search when looking for a class to load.
• Exercise: Open up DrJava or your favorite IDE. Find out

what the class path is. Compare that with what your
classmates report.

• Tricky thing: The class path does not contain the package,
but the directory in which the package is found

7/7/2003 (c) University of Washington 01-15

Footnote: Using Internet Domains for Unique
Names

• Java community convention: use reversed domain names as
top-level package names

package com.sun.java.awt;
package edu.rice.cs.drjava;

• Overkill for simple projects, but a good idea if code is likely to be
used by other organizations or groups

7/7/2003 (c) University of Washington 01-16

Projects

• Many IDE's have a "project" facility
• A way of grouping files needed for a particular application

• May include .java files, .class files, directories, data files,
images,etc.

• May include entire packages

• Definition of “project” depends on a particular IDE
• Can a file be part of more than one project?

• it depends

• Can a package might be used in more than one project?
• it depends

01-5

7/7/2003 (c) University of Washington 01-17

Packages vs. Projects

• package is a Java concept
• is a Java keyword

is a concept used in the import statement

• is understood by the compiler
• is understood by the JVM (Java Virtual Machine)
• will be the same on all platforms, at least abstractly

• project is not a Java concept
• each development environment has its own notion of what a project is
• Often, a project is a directory

May be the same as a package

• May instead be a non-package directory or something else

• Some IDEs let you use a file or package in more than one project; some do not
• Some environments have no project concept

