
CSE143 Sp03 03-1

7/2/2003 (c) 2001-3, University of Washington 03-1

CSE 143 Java

More About Interfaces

Reading: Ch. 15.1.3

7/2/2003 (c) 2001-3, University of Washington 03-2

Interfaces -- Review
• A Java interface declares a set of method signatures

• i.e., says what behavior exists
• Does not say how the behavior is implemented

i.e., does not give code for the methods

• Does not describe any state (but may include “final” constants)
• A concrete class that implements an interface

• Contains “implements InterfaceName” in the class declaration
• Must provide implementations (either directly or inherited from

a superclass) of all methods declared in the interface

• PS: An abstract class can also implement an interface
• Can optionally have implementations of the interface methods

7/2/2003 (c) 2001-3, University of Washington 03-3

interface I
method signatures of

I, without code; no
instance variables

B's stuff

concrete
class C

methods of I,
including code

other methods,
instance

variables of C

7/2/2003 (c) 2001-3, University of Washington 03-4

Uses For Interfaces

• We have already seen Java interfaces as a form of
software specification

• Boss says "you implement these methods or else!"
• Java language checks that all the methods do in fact get

implemented in the concrete classes
• Interfaces have other uses as well

CSE143 Sp03 03-2

7/2/2003 (c) 2001-3, University of Washington 03-5

A Problem – Object Model for a Simulation

• Suppose we are designing the classes for a simulation
game like the Sims, or Sim City

• We might want to model
• People (office workers, police/firemen, politicians, monsters…)
• Pets (cats, dogs, ferrets, lizards, …)
• Vehicles (cars, trucks, buses, …)
• Physical objects (buildings, traffic lights, carnival rides …)

• Object model – use inheritance
• Base classes for People, Pets, Vehicles, PhysicalThings, …
• Extended classes for specific kinds of things (Cat extends Pet,

Dog extends Pet, …)

7/2/2003 (c) 2001-3, University of Washington 03-6

Making it Tick

• "Time-based" simulation work like a movie:
• On each "frame", the picture of the world is updated a little bit
• implies some sort of clock that ticks regularly

• On each tick, every object in the simulation needs to, for
instance, update its state, maybe redraw itself, …

• There is a driver or "engine" that drives the simulation
• Sort of like the movie camera
• The engine knows of all the objects, but doesn't know how to

update them or draw them
• On each tick, tells every object to update and redraw itself
• Each object knows how to update itself and how to draw itself

7/2/2003 (c) 2001-3, University of Washington 03-7

The Engine's Dilemma

• We would like to write methods in the simulation engine
that can work with any object in the simulation

/** update the state of simulation object thing for one clock tick */
public void updateState(??? thing) {

thing.tick();
thing.redraw();

}

• The same method should work for cars, pets, monsters,
ferris wheels, trees, etc.

• Question: What is the type of parameter thing in this
method?

• Footnote: this is an example of a polymorphic method

7/2/2003 (c) 2001-3, University of Washington 03-8

Type Compatibility

• We want to be able to write something like
public void updateState(SimThing thing) { … }

where “SimThing” is a type that is compatible with Cats,
Cars, People, Buildings.

• The engine only needs to keep track of what objects
exist

• The individual objects are responsible for carrying of the
actions

CSE143 Sp03 03-3

7/2/2003 (c) 2001-3, University of Washington 03-9

Solution

• Take the common behavior and specify it in an interface
• Make all objects in the simulation implement that

interface

7/2/2003 (c) 2001-3, University of Washington 03-10

SimThing Interface

• Interface declaration
/** Interface for all objects involved in the simulation */
public interface SimThing {

public void tick();
public void redraw();

}

• Class declaration using the interface
/** Base class for all Pets in the simulation */
public class Pet implements SimThing {

/** tick method for Pets */
public void tick() { … }
/** redraw method for Pets */
public void redraw() { … }
…

}

7/2/2003 (c) 2001-3, University of Washington 03-11

Why Not...
• Why not make SimThing a class or abstract class?
• Answer: In complex models, things do not always fit into

neat hierarchies
• We might want to specify common behavior for all

LivingThings (People, Pets)
• We might identify behavior for all items which can be bought

and sold (Pets, Buildings)

• Class hierarchy won't work
• A class can extend only one class
• You can only define one set of common behavior

• Interfaces to the rescue!

7/2/2003 (c) 2001-3, University of Washington 03-12

SimCity with Three High-Level Interfaces

CSE143 Sp03 03-4

7/2/2003 (c) 2001-3, University of Washington 03-13

Implements vs. Extends

• Both describe an “is-a” relation
• If B implements interface A, then B inherits the

(abstract) method signatures in A
• If B extends class A, then B inherits everything in A,

which can include method code and instance variables
• Sometimes people distinguish “interface inheritance”

from “code” or “class inheritance”
• Informally, “inheritance” is sometimes used to talk

about the superclass/subclass “extends” relation only

7/2/2003 (c) 2001-3, University of Washington 03-14

Classes, Interfaces, and Types

• A class can
• Extend exactly one other class

implicitly Object if “extends …” is not included in the class definition

• Implement zero or more interfaces -- no limit!
• Historical footnote: C++ allows multiple inheritance of classes

• Interfaces can also extend other interfaces
(superinterfaces)
• Mostly found in larger libraries and systems
• A concrete class implementing an extended interface must

implement all methods in all superinterfaces

• Every interface or class declaration creates a new type

7/2/2003 (c) 2001-3, University of Washington 03-15

What is the Type of an Object?

• An object (instance of a class) can have many types
• An instance of class busDriver has all of these types:

• The named class (BusDriver)
• Every superclass that BusDriver extends (Person, Object)
• Every interface (including superinterfaces) that BusDriver

implements (SimThing, LivingThing)

• The instance can be used anywhere one of its types is
appropriate
• As variables
• As parameters and arguments
• As return values

7/2/2003 (c) 2001-3, University of Washington 03-16

Benefits of Interfaces

• May be hard to see in small systems, but in large ones…
• Better model of application domain

• Avoids inappropriate use of inheritance to get polymorphism

• More flexibility in system design
• Can isolate functionality in separate interfaces – better

cohesion, less tendency to create monster “kitchen sink”
interfaces or classes

• Allows multiple abstractions to be mixed and matched as
needed

CSE143 Sp03 03-5

7/2/2003 (c) 2001-3, University of Washington 03-17

Abstract Classes vs. Interfaces

Abstract Class
• Can include instance variables
• Can include a default (partial or

complete) implementation, as a
starter for concrete subclasses

• Wider range of modifiers and
other details (static, etc.)

• Can specify constructors, which
subclasses can invoke with super

• Interfaces with many method
specifications are tedious to
implement

Interface
• A class can extend at most one

superclass (abstract or not), but
multiple interfaces

• By contrast, a class (and an interface)
can implement any number of super-
interfaces

• Helps keep state and behavior
separate

• Provides fewer constraints on
algorithms and data structures

7/2/2003 (c) 2001-3, University of Washington 03-18

A Design Strategy
• These rules of thumb seem to provide a nice balance for

designing software that can evolve over time
(Might be overkill for some CSE 143 projects)

• Any major type should be defined in an interface
• If it makes sense, provide a default implementation of the

interface – can be abstract or concrete
• Client code can choose to either extend the default

implementation, overriding methods that need to be changed,
or implement the complete interface directly (particularly if they
already have another superclass)

• This pattern occurs frequently in the standard Java
libraries

7/2/2003 (c) 2001-3, University of Washington 03-19

ArrayList: Partial Lineage

