Relationships Between Real Things

» Man walks dog
i QJD.?D,(

L 1
?758 +Dog strains at leash
s * Dog wears collar
CSE 143 Java S « Man wears hat

o= + Girl feeds dog
Object & Class Relationships - Inheritance * Girl watches dog ."
+ Dog eats food
Reading: Ch. 9, 14 *Man holds briefcase
+ Dog bites man

71212003 () 20013, University of Washington 021 71212003 () 20013, University of Washington 02:2

Common Relationship Patterns

+ A few types of relationships occur extremely often
« |S-A: Jill is a student (and an employee and a sister and a skier

« HAS-A: An airplane has seats (and lights and wings and

engines and...

* These are so important and common that programming is-a
languages have special features to model them
» Some of these you know (maybe without knowing you know)

« Some of them we’ll learn about in this course, starting now,
with inheritance.

71212003 () 20013, University of Washington 02:3 71212003 () 20013, University of Washington 024

CSE143 Sp03 02-1

Composition: "has a"

« Classes and objects can be related in several ways
» One way: composition, aggregation, or reference
« Dog has-a owner, dog has-a age, dog has-a name, etc.

« In java: one object refers to another object
« via an instance variable

public class Dog {
private String name;/
private int age; Ilthis dog's age
private Person owner; Il'this dog's owner
private Dog mother, father; //this dog’s parents
private Color coatColor; Iletc, etc.

Il'this dog's name

}
+ One can think of the dog as “"composed" of various objects:
"composition”

71212003 () 20013, University of Washington 02:5

Picturing the Relationships

* Dog Fido; //might be 6 years old, brown, owned by
Marge, etc.

+ Dog Apollo; //might be 2 years old, no owner, etc.

+In Java, it is a mistake to think of the parts of an object
as being "inside" the whole.

71212003 () 20013, University of Washington 02:6

Drawing Names and Objects

» Names and objects
« Very different things!
+In general, names refer to objects

« Objects can refer to other objects using instance variable
names

Fido (a name) anobject of rothor
object of type
age (instance
var. name)
mother
(instance var.
narpe

71212003 () 20013, University of Washington 027

Drawing Names and Objects

+ A name might not refer to any object

« One object might have more than one name oo
« i.e., might be more than one reference to it

+ An object might not have any name
* “anonymous”

an object of another
object of type
Dog

type Dog

Fido

MyDoggie refers\to

Fifi

71212003 () 20013, Unlversl(.y/oi Washington 02:8

CSE143 Sp03

02-2

Specialization - "is a"

» Specialization relations can form classification
hierarchies
« cats and dogs are special kinds of mammals;
mammals and birds are special kinds of animals;
animals and plants are special kinds of living things

« lines and triangles are special kinds of polygons;
rectangles, ovals, and polygons are special kinds of shapes
+ Keep in mind: Specialization is not the same as
composition
* Acat "is-an" animal vs. a cat "has-a" owner

"is-a" in Programming

71212003 () 20013, University of Washington 02:9

+ Classes (and interfaces) can be related via specialization
« one class/interface is a special kind of another class/interface
* Rectangle class is a kind of Shape

* The general mechanism for representing “is-a” is
inheritance
« Java interfaces are a special case of this

71212003 () 20013, University of Washington 02-10

Inheritance

+ Java provides direct support for “is-a” relations
« likewise C++, C#, and other object-oriented languages
+ Class inheritance
« one class can inherit from another class,
meaning that it's is a special kind of the other
s Terminology
« Original class is called the base class or superclass
« Specializing class is called the derived class or subclass

Inheritance: The Main Programming Facts

71212003 () 20013, University of Washington 02-11

* Subclass inherits all instance variables and methods of
the inherited class

« Al instance variables and methods of the superclass are
automatically part of the subclass

« Constructors are a special case (later)
+ Subclass can add additional methods and instance
variables
» Subclass can provide different versions of inherited
methods

71212003 () 20013, University of Washington 02-12

CSE143 Sp03

02-3

B extends A

object of
type A

A's stuff is

object of auomaticaly
type B

Drawing Classes

71212003 () 20013, University of Washington 0213

+ Classes and interfaces are generally drawn as
rectangles
« In UML-style pictures, put the label inside the rectangle, near
the top
» When there is a relationship between the classes, you
can draw a line between the rectangles

« Lines may have arrowheads or other decorations to indicate
additional relationship information

71212003 () 20013, University of 02-14

Design Example: Employee Database

* Suppose we want to generalize our Employee example
to handle a more realistic situation
» Application domain - kinds of employees
« Hourly
* Exempt
« Boss

Design Process - Step 1

71212003 () 20013, University of Washington 02-15

* Think up a class to model each “kind” of thing

71212003 () 20013, University of Washington 02-16

CSE143 Sp03

02-4

Design Process - Step 2

Design Process - Step 3

» Identify state/properties of each kind of thing

+ Identify actions (behaviors) that each kind of thing can
do

71212003 () 20013, University of Washington 0217

71212003 () 20013, University of Washington

Key Observation

Generic Employees

** Representation of a generic employee. */

+» Many kinds of employees share common properties and

. public class Employee {
actions Il instance variables
. private String name; Il employee name
+ We can factor common elements into a base

private int id; Il employee id number
** Construct a new employee with the give name and id number... */
public Employee(String name, intid) {

this.name = name;

this.id = id;

}
** Return the name of this employee */
public String getName() { return name; }

+ Use inheritance to create variations for specific classes

Employee

** Return the pay eamed by this employee */
public double getPay() { return 0.0;} // ?2??
HourlyEmployee ExemptEmployee
}
71212003 () 20013, University of Washington 02-19 71212003 () 20013, University of Washington 02-20

02-5

Specific Kinds of Employees

« Hourly Employee « Exempt Employee
public class HourlyEmployee public class ExcemptEmployee
extends Employee { extends Employee {
Il additional instance variables Il additional instance variable
private double hours; // hours worked private double salary; // weekly pay
private double hourlyPay; // pay rate
** Return pay earned */
[** Return pay earned */ public double getPay() {
public double getPay() { return salary;
return hours * hourlyPay; }

}

In Pictures (non-UML)

71212003 () 20013, University of Washington 02-21

Employee

Employee
stuff: name,

id, getPay()

HourlyEmployee ExemptEmployee

Employee
stuff: name,
id getPay()

Employee
stuff: name,
id, getPay()

HourlyEmp.

stuff: hours,

hourlyPay,
getPay()

ExemptEmp.
stuff: salary,
getPay()

71212003 () 20013, University of Washington 02-22

More Java “

If class D extends B /inherits from B... “
+ Class D inherits all methods and fields from class B
+But... "all" is too strong

« constructors are not inherited

« same is true of static methods and static fields

although these static members are still available in inherited part of the object
+ Class D may contain additional (new) methods and
fields

« But has no way to delete any

Never to be Forgotten “

71212003 () 20013, University of Washington 02-23

If class D extends/inherits from B... “

Every object of type D is
also an object of type B

« a D can do anything that a B can do (because of inheritance)
But it might do it differently!

« a D can be used in any context where a B is appropriate

71212003 () 20013, University of Washington 02-24

CSE143 Sp03

02-6

Method Overriding

D

+ If class D extends B, class D may provide an alternative,
replacement implementation of any method it would
otherwise inherit from B

* The definition in D is said to override the definition in B
s Example: getPay()

_—

Peculiarities of Overriding

71212003 () 20013, University of Washington 02:25

+ An overriding method
« cannot change the number of arguments
« cannot change the argument types
« cannot change the type of the result [why?]
+ Can you override an instance variable?
* The basic answer is “please don’t”

* You might not get an obvious error if you try it... ask me in
person if you're really curious

71212003 () 20013, University of Washington 02:26

Polymorphism

s Polymorphic: "having many forms*

+ Polymorphism is an important feature of object-oriented
programming

+ Polymorphism comes in several flavors
* You could say, polymorphism is polymorphic...

» College survival tip: Next time you have to write an
essay in a humanities class, use the words
“polymorphic” and “polymorphism”. Watch your grade
rise!

Object Reference Polymorphism

71212003 () 20013, University of Washington 02-27

+ A variable that can refer to objects of different types is
said to be polymorphic

s Example:
Animal pet;
Dog myDog;
Cat myCat;
« If Animal is the superclass of Dog and Cat, pet can refer to
either a dog or a cat! In this sense, pet is polymorphic
myDog = new Dog(“Fido”);
myCat = new Cat(“Mimsy”);
pet = myDog; //legal or illegal?
pet = myCat; //legal or illegal?
myDog = myCat; //legal or illegal?

71212003 () 20013, University of Washington 02-28

CSE143 Sp03

02-7

Method Polymorphism

» Methods with polymorphic arguments are also said to be
polymorphic
public void printPay(Employee €) {
System.out.printin(e.getPay());
}
» Method printPay can be called with an argument of type
HourlyEmployee or of type ExemptEmployee
« Note that printPay itself is not overriden
« But it acts differently depending on the dynamic type of e

s Polymorphic methods can be reused for many types

HourlyEmployee emp1 = new

Employee HourlyEmployee(“Cartman”);
ExemptEmployee emp2 =
WPy new(“Kenny");
printPayEmployee &) printPay(emp1);
printPay(emp2);

HaurlyEmplavee ExemptEmplayee

getPay) PEGE

71212003 () 20013, University of Washington 02-29

71212003 () 20013, University of Washington 02-30

Static and Dynamic Types

Static and Dynamic Types

» Static type: the declared type of the variable
* never changes
» Dynamic type: the run-time class of the object the
variable currently refers to
« can change as program executes
A=B;
* When is such an assignment statement legal?
« It depends on static type compatibility
« Does not depend on dynamic type of A and B

» Which of these are legal? Illegal?
« Can you fix any of these with casts?

+ What are the static and dynamic types of the variables
after assignments?
Static? ~ Dynamic?
HourlyEmployee bart = new HourlyEmployee...);
ExemptEmployee homer = new ExemptEmployee(...);
Employee marge = new Employee...)
marge = homer ;
homer = bart,
homer = marge;

71212003 () 20013, University of Washington 02:31

71212003 () 20013, University of Washington 02-32

CSE143 Sp03

Dynamic Dispatch

+ "Dispatch” refers to the act of actually placing a method
in execution at run-time

» When types are static, the compiler knows exactly what
method must execute

» When types are dynamic... the compiler knows the name
of the method - but there could be ambiguity about
which version of the method will actually be needed at
run-time

« In this case, the decision is deferred until run-time, and we
refer to it as dynamic dispatch
* The chosen method is the one matching the dynamic type

Method Lookup: How Dynamic Dispatch Works

71212003 () 20013, University of Washington 02-33

« When a message is sent to an object, the right method to run is
the one in the most specific class that the object is an instance of
» Makes sure that method overriding always has an effect

» Method lookup (a.k.a. dynamic dispatch) algorithm:
« Start with the run-time class (dynamic type) of the receiver object (not the
static type!)
« Search that class for a matching method
« If one is found, invoke it
« Otherwise, go to the superclass, and continue searching
« Example:
Employee e = new HourlyEmployee(...)
System.out.printin(e); Il HourlyEmployee toString()
Employee e = new ExemptEmployee(...)
System.out.printin(e); Il ExemptEmployee toString()

71212003 () 20013, University of Washington 02:34

CSE143 Sp03

02-9

