Relationships Between Real Things

» Man walks dog
i QJD.?D,(

L 1
?758 +Dog strains at leash
s * Dog wears collar
CSE 143 Java S « Man wears hat

o= + Girl feeds dog
Object & Class Relationships - Inheritance * Girl watches dog ."
+ Dog eats food
Reading: Ch. 9, 14 *Man holds briefcase
+ Dog bites man
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Common Relationship Patterns

+ A few types of relationships occur extremely often
« |S-A: Jill is a student (and an employee and a sister and a skier

« HAS-A: An airplane has seats (and lights and wings and

engines and...

* These are so important and common that programming is-a
languages have special features to model them
» Some of these you know (maybe without knowing you know)

« Some of them we’ll learn about in this course, starting now,
with inheritance.
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Composition: "has a"

« Classes and objects can be related in several ways
» One way: composition, aggregation, or reference
« Dog has-a owner, dog has-a age, dog has-a name, etc.

« In java: one object refers to another object
« via an instance variable

public class Dog {
private String name;/
private int age; Ilthis dog's age
private Person owner; Il'this dog's owner
private Dog mother, father; //this dog’s parents
private Color coatColor; Iletc, etc.

Il'this dog's name

}
+ One can think of the dog as “"composed" of various objects:
"composition”
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Picturing the Relationships

* Dog Fido; //might be 6 years old, brown, owned by
Marge, etc.

+ Dog Apollo; //might be 2 years old, no owner, etc.

+In Java, it is a mistake to think of the parts of an object
as being "inside" the whole.
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Drawing Names and Objects

» Names and objects
« Very different things!
+In general, names refer to objects

« Objects can refer to other objects using instance variable
names

Fido (a name) anobject of rothor
object of type
age (instance
var. name)
mother
(instance var.
narpe
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Drawing Names and Objects

+ A name might not refer to any object

« One object might have more than one name oo
« i.e., might be more than one reference to it

+ An object might not have any name
* “anonymous”

an object of another
object of type
Dog

type Dog

Fido

MyDoggie refers\to

Fifi
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Specialization - "is a"

» Specialization relations can form classification
hierarchies
« cats and dogs are special kinds of mammals;
mammals and birds are special kinds of animals;
animals and plants are special kinds of living things

« lines and triangles are special kinds of polygons;
rectangles, ovals, and polygons are special kinds of shapes
+ Keep in mind: Specialization is not the same as
composition
* Acat "is-an" animal vs. a cat "has-a" owner

"is-a" in Programming
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+ Classes (and interfaces) can be related via specialization
« one class/interface is a special kind of another class/interface
* Rectangle class is a kind of Shape

* The general mechanism for representing “is-a” is
inheritance
« Java interfaces are a special case of this
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Inheritance

+ Java provides direct support for “is-a” relations
« likewise C++, C#, and other object-oriented languages
+ Class inheritance
« one class can inherit from another class,
meaning that it's is a special kind of the other
s Terminology
« Original class is called the base class or superclass
« Specializing class is called the derived class or subclass

Inheritance: The Main Programming Facts
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* Subclass inherits all instance variables and methods of
the inherited class

« Al instance variables and methods of the superclass are
automatically part of the subclass

« Constructors are a special case (later)
+ Subclass can add additional methods and instance
variables
» Subclass can provide different versions of inherited
methods
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B extends A

object of
type A

A's stuff is

object of auomaticaly
type B

Drawing Classes
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+ Classes and interfaces are generally drawn as
rectangles
« In UML-style pictures, put the label inside the rectangle, near
the top
» When there is a relationship between the classes, you
can draw a line between the rectangles

« Lines may have arrowheads or other decorations to indicate
additional relationship information
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Design Example: Employee Database

* Suppose we want to generalize our Employee example
to handle a more realistic situation
» Application domain - kinds of employees
« Hourly
* Exempt
« Boss

Design Process - Step 1
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* Think up a class to model each “kind” of thing
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Design Process - Step 2

Design Process - Step 3

» Identify state/properties of each kind of thing

+ Identify actions (behaviors) that each kind of thing can
do
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Key Observation

Generic Employees

** Representation of a generic employee. */

+» Many kinds of employees share common properties and

. public class Employee {
actions Il instance variables
. private String name; Il employee name
+ We can factor common elements into a base

private int id; Il employee id number
** Construct a new employee with the give name and id number... */
public Employee(String name, intid) {

this.name = name;

this.id = id;

}
** Return the name of this employee */
public String getName( ) { return name; }

+ Use inheritance to create variations for specific classes

Employee

** Return the pay eamed by this employee */
public double getPay() { return 0.0;} // ?2??
HourlyEmployee ExemptEmployee
}
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Specific Kinds of Employees

« Hourly Employee « Exempt Employee
public class HourlyEmployee public class ExcemptEmployee
extends Employee { extends Employee {
Il additional instance variables Il additional instance variable
private double hours; // hours worked private double salary; // weekly pay
private double hourlyPay; // pay rate
** Return pay earned */
[** Return pay earned */ public double getPay() {
public double getPay() { return salary;
return hours * hourlyPay; }

}

In Pictures (non-UML)
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Employee

Employee
stuff: name,

id, getPay()

HourlyEmployee ExemptEmployee

Employee
stuff: name,
id getPay()

Employee
stuff: name,
id, getPay()

HourlyEmp.

stuff: hours,

hourlyPay,
getPay()

ExemptEmp.
stuff: salary,
getPay()
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More Java “

If class D extends B /inherits from B... “
+ Class D inherits all methods and fields from class B
+But... "all" is too strong

« constructors are not inherited

« same is true of static methods and static fields

although these static members are still available in inherited part of the object
+ Class D may contain additional (new) methods and
fields

« But has no way to delete any

Never to be Forgotten “

71212003 () 20013, University of Washington 02-23

If class D extends/inherits from B... “

Every object of type D is
also an object of type B

« a D can do anything that a B can do (because of inheritance)
But it might do it differently!

« a D can be used in any context where a B is appropriate
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Method Overriding

D

+ If class D extends B, class D may provide an alternative,
replacement implementation of any method it would
otherwise inherit from B

* The definition in D is said to override the definition in B
s Example: getPay()

_—

Peculiarities of Overriding
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+ An overriding method
« cannot change the number of arguments
« cannot change the argument types
« cannot change the type of the result [why?]
+ Can you override an instance variable?
* The basic answer is “please don’t”

* You might not get an obvious error if you try it... ask me in
person if you're really curious
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Polymorphism

s Polymorphic: "having many forms*

+ Polymorphism is an important feature of object-oriented
programming

+ Polymorphism comes in several flavors
* You could say, polymorphism is polymorphic...

» College survival tip: Next time you have to write an
essay in a humanities class, use the words
“polymorphic” and “polymorphism”. Watch your grade
rise!

Object Reference Polymorphism
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+ A variable that can refer to objects of different types is
said to be polymorphic

s Example:
Animal pet;
Dog myDog;
Cat myCat;
« If Animal is the superclass of Dog and Cat, pet can refer to
either a dog or a cat! In this sense, pet is polymorphic
myDog = new Dog(“Fido”);
myCat = new Cat(“Mimsy”);
pet = myDog; //legal or illegal?
pet = myCat; //legal or illegal?
myDog = myCat; //legal or illegal?

71212003 () 20013, University of Washington 02-28

CSE143 Sp03

02-7



Method Polymorphism

» Methods with polymorphic arguments are also said to be
polymorphic
public void printPay(Employee €) {
System.out.printin(e.getPay( ));
}
» Method printPay can be called with an argument of type
HourlyEmployee or of type ExemptEmployee
« Note that printPay itself is not overriden
« But it acts differently depending on the dynamic type of e

s Polymorphic methods can be reused for many types

HourlyEmployee emp1 = new

Employee HourlyEmployee(“Cartman”);
ExemptEmployee emp2 =
WPy new(“Kenny");
printPayEmployee &) printPay(emp1);
printPay(emp2);

HaurlyEmplavee ExemptEmplayee

getPay) PEGE
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Static and Dynamic Types

Static and Dynamic Types

» Static type: the declared type of the variable
* never changes
» Dynamic type: the run-time class of the object the
variable currently refers to
« can change as program executes
A=B;
* When is such an assignment statement legal?
« It depends on static type compatibility
« Does not depend on dynamic type of A and B

» Which of these are legal? Illegal?
« Can you fix any of these with casts?

+ What are the static and dynamic types of the variables
after assignments?
Static? ~ Dynamic?
HourlyEmployee bart = new HourlyEmployee...);
ExemptEmployee homer = new ExemptEmployee(...);
Employee marge = new Employee...)
marge = homer ;
homer = bart,
homer = marge;
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Dynamic Dispatch

+ "Dispatch” refers to the act of actually placing a method
in execution at run-time

» When types are static, the compiler knows exactly what
method must execute

» When types are dynamic... the compiler knows the name
of the method - but there could be ambiguity about
which version of the method will actually be needed at
run-time

« In this case, the decision is deferred until run-time, and we
refer to it as dynamic dispatch
* The chosen method is the one matching the dynamic type

Method Lookup: How Dynamic Dispatch Works
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« When a message is sent to an object, the right method to run is
the one in the most specific class that the object is an instance of
» Makes sure that method overriding always has an effect

» Method lookup (a.k.a. dynamic dispatch) algorithm:
« Start with the run-time class (dynamic type) of the receiver object (not the
static type!)
« Search that class for a matching method
« If one is found, invoke it
« Otherwise, go to the superclass, and continue searching
« Example:
Employee e = new HourlyEmployee(...)
System.out.printin(e); Il HourlyEmployee toString( )
Employee e = new ExemptEmployee(...)
System.out.printin(e); Il ExemptEmployee toString( )
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