
CSE143 Sp03 01-1

7/1/2003 (c) University of Washington 01-1

Specifications
Via Interfaces and Commenting

Notes on Programming Practice and
Software Quality

7/1/2003 (c) University of Washington 01-2

Specifications
• Specifications are descriptions

• Sometimes of requirements or intentions or desired properties
• Sometimes of actual properties or situations

• Specifications can take various forms
• Here we look at just two forms:

• Java interfaces
• Program comments

7/1/2003 (c) University of Washington 01-3

Interfaces in Java
• A Java interface declares a set of method signatures

• i.e., says what behavior exists

• Does not say how the behavior is implemented
i.e., does not give code for the methods

• Does not describe state
• Exception – may describe permanent, unchangeable state

“final” constants which never change

7/1/2003 (c) University of Washington 01-4

Interface Syntax in Java
• Looks similar to a class definition:

interface BankAccountInterface {
double getBalance();

double deposit(double amount);

}

• A concrete class that implements an interface
• Contains “implements InterfaceName” in the class declaration
• Must provide implementations of all methods declared in the interface

• Once an interface has been defined, you could define multiple
classes which implement it (have the specified behavior)

CSE143 Sp03 01-2

7/1/2003 (c) University of Washington 01-5

interface I
method signatures of

I, without code; no
instance variables

B's stuff

concrete
class C

methods of I,
including code

other methods,
instance

variables of C

7/1/2003 (c) University of Washington 01-6

Interfaces as Specifications

• Managers (or colleagues or teachers...) often say, "your class has
to implement at least the following 3 methods, named just as I tell
you and with these exact parameters:"

1.
2.
3.

• The manager may not care much how you write the code, as long
as it meets the interface specification

• Why define a Java interface and use "implements"?
• Java will check that you did in fact follow the specification
• Compile error if you leave out a required method
• Compile error if you don't have the right return type, parameters types, etc.

7/1/2003 (c) University of Washington 01-7

Limitations of Interfaces as Specifications

• Interfaces only tell the form or syntax of the behavior

void withdrawFunds(double amount);
• Interface tells us what the name of the method is, the return

type, parameters
• Does not tell us what a valid amount is (can it be negative?)
• Does not tell us what a reasonable amount is (can it be a billion

dollars?)
• Does not tell us what should happen if the account has

insufficent funds

7/1/2003 (c) University of Washington 01-8

Comments as Specifications
• Comments are directed toward human readers
• Can describe meaning and intention in great detail

CSE143 Sp03 01-3

7/1/2003 (c) University of Washington 01-9

JavaDoc

• Java provides a clean way of including documentation
as part of the source code – JavaDoc comments
• Begin with /** and end with */

• Can be automatically formatted to produce
documentation pages
• Command-line tool is part of the Sun SDK
• Built-in support in most IDE's including BlueJ, Eclipse; not in

DrJava (yet)

• Universally used and understood by Java programmers
• Writing JavaDoc comments is part of the practice of

programming

7/1/2003 (c) University of Washington 01-10

JavaDoc Tags

• Special tags to control formatting
• @author – specify author
• @version – version number, date, etc.
• @param – description of a method parameter
• @return – description of a non-void method result
• Others (links, see also, …), plus can use arbitrary html

• Used to produce all online Java API documentation

7/1/2003 (c) University of Washington 01-11

Programming Practice vs Bare Requirements

• A Java program will compile equally well with or without
comments

• Using them is a matter of proper practice and procedure
• In every aspect of life, there are commonly understood

practices, procedures, conventions, and rituals
• Understood by all, followed by most
• Usually not required in any legal sense

• Programming is no exception
• Learning about and following good practices is a part of this

course
And part of the homework grading!

7/1/2003 (c) University of Washington 01-12

Another Good Practice
• Place a static method in each class, just for testing it.

• No special name; could even be main().
• Even simple tests are helpful
• Run the test method every time the class is modified

/** A method to test out some of the BankAccount operations */
public static void test() {
BankAccount myAccount = new BankAccount("Joe Bob");
myAccount.deposit(100.00);
myAccount.deposit(250.00);
myAccount.withdraw(50.00);
System.out.println(myAccount); // automatically calls myAccount.toString()

}

} // end of BankAccount

CSE143 Sp03 01-4

7/1/2003 (c) University of Washington 01-13

Required vs. Recommended

• Writing comments is "recommended"
• Creating test methods is "recommended"
• You've probably been given other recommendations:

• variable naming, indentation, etc.
• Use this library, don't use that library

• Why bother, when the only thing that matters is whether
your program runs or not?
• Answer #1: Whether your program runs or not is not the only

thing that matters!
• Answer #2: Recommended practices have been shown to

increase software quality

7/1/2003 (c) University of Washington 01-14

Coupling and Cohesion

• Evaluating the quality of program structure is difficult.
• The following are two properties which measure

important aspects of program structure:
• Coupling – the degree to which a class interacts with or

depends on another class
• Cohesion – how well a class encapsulates a single

notion
• Experience shows: a system is more robust and easier

to maintain if
• Coupling between classes/modules is minimized
• Cohesion within classes/modules is maximized

7/1/2003 (c) University of Washington 01-15

Software Engineering and Practice

• Building good software is not just about getting it to
produce the right output

• Many other goals may exist
• "Software engineering" refers to practices which

promote the creation of good software, in all its aspects
• Some of this is directly code-related: class and method design
• Some of it is more external: documentation, style
• Some of it is higher-level: system architecture

• Attention to software quality is important in CSE143
• as it is in the profession

