
CSE143 Sp03 01-1

7/1/2003 (c) University of Washington 01-1

CSE 143 Java

Programming as Modeling

Reading: Ch. 1-6

7/1/2003 (c) University of Washington 01-2

Building Virtual Worlds
• Much of programming can be viewed as building a

model of a real or imaginary world in the computer
• a banking program models real banks
• a checkers program models a real game
• a fantasy game program models an imaginary world
• a word processor models an intelligent typewriter

• Running the program (the model) simulates what would
happen in the modeled world

• Often it's a lot easier or safer to build models than the
real thing
• Example: a tornado simulator

7/1/2003 (c) University of Washington 01-3

Java Tools for Modeling
• Objects in Java can model things in the (real or

imaginary) world
• The bank: Customers, employees, accounts, transactions...
• Checkers: The Checkerboard, pieces, players, game history
• Video game: Characters, landscapes, obstacles, weapons,

treasure, scores
• Documents: paragraphs, words, symbols, spelling dictionaries,

fonts, smart paper-clip

• Objects have
• Responsibilities – what you can ask them to do
• Properties – what they know

7/1/2003 (c) University of Washington 01-4

Basic Java Mechanisms for Modeling
• A class describes a template or pattern for things
• An object or instance is a particular thing
• Constructors model ways to create new instances
• Methods model behaviors or actions that these things

can perform
• Method calls model messages: requests from one object

to another
• Instance variables model the state or properties of

things

CSE143 Sp03 01-2

7/1/2003 (c) University of Washington 01-5

What Makes a Good Model?
• Often, the closer the model matches the (real or

imaginary) world, the better
• More likely it's an accurate model
• Easier for human readers of the program to understand what's

going on in the program

• Sometimes, a too detailed model of reality is not a good
thing. Why?

7/1/2003 (c) University of Washington 01-6

What Else Makes a Good Model?
• The easier the model is to extend & evolve, the better

• May want to extend the model...
• May need to change the model...

• Sad law of life: “A Program is Never Finished”
• Why??

7/1/2003 (c) University of Washington 01-7

More Techniques for Good Modeling
• Separating STATE from BEHAVIOR is a useful design

strategy
• One way to capture this is to define good interfaces

separate from the implementation (code)
• An interface specifies to clients (users of the class) what

are the operations (methods) that can be invoked; state
is not part of the interface

7/1/2003 (c) University of Washington 01-8

State vs Behavior

• State
• has blue hair
• wearing glasses
• wearing blue shoes
• is hopping mad

• Behavior
• clenches fist
• raises arm
• hops up and down
• screams

CSE143 Sp03 01-3

7/1/2003 (c) University of Washington 01-9

Which is More Fundamental?
• Behavior or State?

• What do you think, and why?

7/1/2003 (c) University of Washington 01-10

Behavior vs. State in Java

• Example: Bank accounts have balances
• When you're at the ATM you can check your balance

• Does this mean BankAccount class should have a
“balance” instance variable?

• Does this mean BankAccount class should have a
"getBalance" method?

• These two questions look superficially similar

7/1/2003 (c) University of Washington 01-11

"Balance" Question Rephrased

• "Who cares if a class has an instance variable named
balance?
• Answer, Nobody cares, except the poor guy implementing the

class

• "Who cares if a class has a method named getBalance?"
• Answer, potentially a lot of people!

Boss: "You're hired. Now create a BankAccount class,
and it had better have a getBalance method -- or you're
fired."

Programmer: "What instance variable should I use?"
Boss: "Don't bother me with that trivia – or you're fired."

7/1/2003 (c) University of Washington 01-12

Appendix
Some Java Review Examples

CSE143 Sp03 01-4

7/1/2003 (c) University of Washington 01-13

Java Review Example: Employee
/** Representation of an employee in a personnel system
* @author Hal Perkins
* @version CSE143 Sp03 lecture example */

public abstract class Employee {
// instance variables
private String name; // employee name
private int id; // employee id number
private double pay; // employee weekly pay
/** Construct a new employee with the give name, id number, and weekly pay
* @param name Employee's name
* @param id Employee's id number
*/

public Employee(String name, int id, double pay) {
this.name = name;
this.id = id;
this.pay = pay;

}
…

7/1/2003 (c) University of Washington 01-14

Bank Example (2)
/**
* Return the name of this employee
* @return Employee name
*/
public String getName() {

return name;
}

/**
* Return the id number of this employee
* @return Employee id number
*/
public int getId() {

return id;
}

…

7/1/2003 (c) University of Washington 01-15

Bank Example (3)
…

/**
* Return the pay earned by this employee
* @return Employee's pay for the current pay period
*/
public double getPay() {

return pay;
}

/** Set this employee’s pay
* @param newPayRate new pay rate for this employee
*/
public void setPay(double newPayRate) {

pay = newPayRate;
}

}

