
1

Rules

Start Endn=4

Intuition

But this required a couple steps we don’t
know how to do. For instance:

Towers of Hanoi Solution

//n is height, from is current pile location, to is destination

//pegs are numbered 1,2,3

public void moveTower(int n, int from, int to) {

if (n == 1) {

//move from one ring to another directly

} else {

other = 6-from-to; //Trick to find other peg

moveTower(n-1,from,other);

//move big to other ring

moveTower(n-1,other,to);

}

}

But how do we know what the moves are?

Towers of Hanoi Solution

//n is height, from is current pile location, to is destination

//pegs are numbered 1,2,3

public void moveTower(int n, int from, int to) {

if (n == 1) {

System.out.println(“Move from “+from+” to “+to);

} else {

other = 6-from-to; //Trick to find other peg

moveTower(n-1,from,other);

System.out.println(“Move from “+from+” to “+to);

moveTower(n-1,other,to);

}

}

2

move (3,1,3)

move (2,2,3)move (2,1,2)

move (1,1,3) move (1,3,2) move (1,2,1) move (1,1,3)

How much work directly in each call?

How many total calls?

What is the time complexity?

How deep does the stack get?

Towers of Hanoi

� Time complexity

� O(2^n)

� Expensive. But this simply is an expensive
problem

� Space complexity(stack)

� O(n)

� Should we worry? Probably not. Running

time is exponential, so n can’t be that big

Merge sort

� Insertion sort and bubble sort work,

BUT are O(n^2)

� Can we do better?

� Merge sort

� Can we divide the problem into smaller
problems?

� Is there a way to combine solutions to
smaller problems easily?

Intuition

� Combining two sorted lists into a single
sorted lists is (relatively) easy

� Suppose you had two piles of alphabetized
exams.

� How would you combine them into one
alphabetized pile?

Anne, Eric, John, Marie

Ben, Bob, Kyle,Swati

Anne, Ben, Bob, Eric,
John,Kyle,Marie,Swati

Merge sort

� But, how do we sort the two haves of

the list?

� By splitting them in half, sorting the halves

and merging of course

� Eventually we reach a base case with 1

element

void msort(int data[]) {

msort(data,new int[data.length],0,data.length-1);

}

void msort(int data[],int extra[],int first,int second) {

if (data.length>1) {

middle=(first+second)/2;

msort(data,extra,first,middle-1);

msort(data,extra,middle,second);

merge(data,extra,first,middle,second);

}

}

3

void merge(int data[],int extra[],int first,int second,int last) {

int i,b1,b2;

b1 = first; b2 = second;

for (i=0;i<(last-first+1);i++) {

if (b1<second && (b2>last || data[b1]<=data[b2])) {

extra[first+i]=data[b1];

b1++;

} else {

extra[first+i]=data[b2];

b2++;

}

}

for (i=0;i<(last-first+1);I++) {

data[first+i]=extra[first+i];

}

}

Merge sort

� time: O(n*log(n))

� Space

� For arrays: O(n)

� Need a destination list to copy it to

� Are VERY complicated ways around this

� For linked lists: O(1)

� A bit harder to find the mid point, but it’s only
an extra linear amount of work at each level

