
CSE 143 Z

Z-108/14/01

Beyond Basic C++
Templates

Modern Applications Development
Java

143 Wrapup

CSE 143

Z-208/14/01

What’s Left To Do?
•Beyond the C++ covered in this course

•Templates: a C++ power feature

•There are many other topics we can’t cover

•Trends in programming
•Applications development frameworks

•MFC (C++)

•Java
•What do you do after CSE143?
•A look back at the topics in CSE143

Z-308/14/01

A Problem with Reusing Code

•Inheritance gives us a way to extend and reuse
code

•Sometimes inheritance isn’t the solution
•Example: Bank simulation. I have implemented a
queue of customers; I also need a queue of stock
transactions.
•No "is-a" or "has-a" relationships between the items
•Must reimplement the queue from scratch

•Would really like to have one Queue class, which
could somehow be reused with different item
types

Z-408/14/01

Templates
•A template is a general pattern for a class or a
function in C++

•Everything is filled in, except one or more types
•Examples:

•a queue template class, with all the definitions complete,
methods implemented, etc, but the type of the data item
left open as a parameter

•a sort template function: type of the item being sorted is
left open

•An extremely powerful feature of C++
•Found in only a few advanced programming languages.

Z-508/14/01

A Template Class
template <class T> class Queue {

public:
 void insert(T item);
 T remove();

};

// in queue.cpp

template <class T>
void Queue<T>::insert(T item)
 { ... }

template <class T>
T Queue<T>::remove()

 { ... }
Z-608/14/01

Using Templates
Queue<int> intQueue;

Queue<double> dblQueue;
intQueue.insert(5); intQueue.insert(7);
dblQueue.insert(3.9); dblQueue.insert(-5.3);

double dv = dblQueue.remove();
int iv = intQueue.remove();

Queue<Book *> books;
books.insert(new Book(“Moby Dick”));
books.insert(new Book(“Java for Jaguars”));

Book *eveningReading = books.remove();

CSE 143 Z

Z-708/14/01

Standard C++ Library
•The new Standard Library of C++ contains templates for

many useful container types and generic algorithms
• Originally called the Standard Template Library (STL)

•Includes
• container class templates: list, set, map, stack, queue, vector, etc.

• generic algorithms for searching, sorting, merging, etc.

• iterators to link containers and algorithms

•To use these, you need to understand
• 1. C++ templates and container classes
• 2. The data structures and algorithms themselves (abstractly)

• 3. Exact usage details (method names, parameters, etc.)

Z-808/14/01

Trends in Programming
Old School
•Input/process/output
•Reuse via libraries of

functions

•Programmer calls functions

•COBOL, C/C++, Ada,
Pascal, etc.

•Data stored in files and
databases

New Wave
•Event-driven
•Reuse via libraries of

classes, components, and
design patterns

•Programmer inherits from
classes, links
components together

•C++, Java, Visual Basic,
scripting languages, etc.

•All that, plus data from
OO databases, persistent
object stores, networks,
Web

Z-908/14/01

Beyond Objects: Components
•Component: a "sealed" object

•Some methods and data are "exposed" to the outside
world

•Language-neutral
•source code not visible
•may be used within any compliant programming language
or environment, possibly even at a distance.

•Supporting and related technologies
•Microsoft: VB, COM, OLE, Active-X, ASP, etc.
•Sun: JavaBeans
•CORBA
•Scripting languages (VBScript, JavaScript, etc.)

Z-1008/14/01

Windows C++ Application Development

•Much C++ Windows development uses Microsoft
Foundation Classes (MFC)

•MFC Key features
• Graphical User Interface (GUI)

Windows, menus, buttons, drawing areas

• Event-driven
Respond to internal and external events

Multi-threaded

• Object-oriented
Built-in class hierarchies for standard reusable objects

• Programmer’s job
Understand the hierarchy; use and extend given classes; hook
into events; add custom logic

Z-1108/14/01

MFC Class Hierarchy

Z-1208/14/01

Key MFC Classes
•Everything descends from CObject
•CObject/CCmdTarget/CWinThread/CWinApp

•One per application, container for the whole thing

•CObject/CCmdTarget/CWnd
•A window (rectangular area); about 50 subclasses
•FrameWnd: resizable main frame
•CControlBar, CDialog, CButton, CEdit, etc. for user
interaction

•CObject/Exception
•CObject/CFile
•CObject/CDC: “graphics context”

CSE 143 Z

Z-1308/14/01

Using MFC
•Hard to learn

•"Wizards" help somewhat
•Nevertheless, a big improvement over previous
environment:
Win16/Win32 API: Hundreds of individual C functions

•Reasonably widely used
•Not perfectly integrated with Windows OS

•mismatch with event handling

•Not part of C++
•Mismatch or conflicts with standard libraries
•Compiler can’t check everything
•Windows only - not available on other platforms

Z-1408/14/01

Java
•A new language created by Sun Microsystems
•Based on C++, but simpler

•similar syntax
•no explicit pointers

’new’ but no ’delete’: garbage collected

•safety checking (array bounds, etc.)
•no preprocessor

•Designed from the ground up to be
•object-oriented

no stand-alone functions

•GUI (AWT: Abstract Windows Toolkit, SWING)
•platform-independent
• Internet-friendly

Z-1508/14/01

Java’s Object Model
•Similar to C++ in notation and overall concept

•But some fundamental differences

•All classes descend from "Object"
•All methods automatically virtual
•Deliberately missing some C++ power features

•No multiple inheritance
But provides "interfaces," which are similar to
abstract base classes with no data.

•No operator overloading

•No templates (but some form of templates might be
added to the language in the next year or two)

Z-1608/14/01

Java Class Hierarchy Chart

Z-1708/14/01

"Hello, World!" In Java
import javax.swing.*; // access libraries

import java.awt.*; // (similar idea to include

import java.awt.event.*; // but not the same)

// in Java, everything goes in a class

public class AnApplication {

 // main is “static”; one instance per class

 public static void main(String[] args) {

 // create a window frame

 JFrame frame = new JFrame("MyApplication");

 // create a label to go in it

 JLabel label = new JLabel("Hello, World!");

 frame.getContentPane().add(label);

Z-1808/14/01

"Hello, World!" (cont)
 // create an object to handle events

 frame.addWindowListener(new WindowAdapter() {

 // called when the window is closed

 public void windowClosing(WindowEvent e){

 System.exit(0); // exit the program!

 }

 });

 frame.pack(); // organize the frame

 frame.setVisible(true); // show the frame

 }

}

CSE 143 Z

Z-1908/14/01

Java Memory Model
•No “pointers” – use of references is implicit

thing.method(argument);

•All objects and arrays allocated on the heap –
even if only used locally in a function

Thing thing = new Thing();

•Automatic garbage collection
•Storage allocated to an object is reclaimed when the
object is no longer accessible

•No explicit “delete”

•Rarely need destructors

Z-2008/14/01

What’s Beyond 143 For You?
•Computer-related majors

•Some within the CSE Department (Computer Science
and Engineering), some based elsewhere

•Other major + CSE courses
•Long-term, a real winner
•Combine interest/aptitude in any field with CS
knowledge

•"Real-world" programming
•Often involves maintenance of existing programs
•Requires knowledge of customer application
•Work as part of a team
•May use some specialized programming tools

Z-2108/14/01

Computer-Related Majors

• Within CSE:
• Computer Science (Arts & Sciences)
• Computer Engineering (College of Engineering)

• ACMS: Applied Computational and
Mathematical Science (Arts and Sciences)

• Information Technology (Library School)
• Information Systems (Business School)
• Plus... UW Bothell and UW Tacoma offer a

Software Systems

Z-2208/14/01

CSE Courses
•After 143, it’s assumed you can program!
•Non-majors courses

•373 (Data Structures) Most direct successor to 143
•Then 410 (Computer Systems), 413 (Prog. Languages),
415 (Artificial Intelligence)

•Majors courses
•Need permission if not CSE major
•321 (Discrete Structures)
•322 (Formal Models)
•326 (Data Structures)
•370 (Digital Logic)

Z-2308/14/01

UW Certificate Programs

• Multi-course sequences
• Offered through UW Extension

• Separate tuition, schedule, registration

• Most classes in evenings or on weekends

• Most lead to a "certificate" rather than UW credit

• Over a dozen: C, C++, Java, Perl, Windows,
Internet, Graphics, Multimedia, etc. etc.

• Some can be applied toward a degree at UW
Bothell

Z-2408/14/01

Wrapping Up 143
•What did we learn?

[“Professor, why is this slide blank?”]

CSE 143 Z

Z-2508/14/01

Knowledge And Skills
•C++ Programming Specifics

•Classes
•Dynamic memory
•Stream I/O, Overloading, other C++ specifics

•General programming
•Recursion
•Object-oriented programming style

-oriented. A clumsy, pretentious device, much in vogue.
Find a better way of indicating orientation or alignment

 or direction.
W. Strunk & E. B. White, The Elements of Style

Z-2608/14/01

Knowledge and Skills (cont.)

•Software Engineering
• interpreting specs

•building sizable systems

•documenting (charts, descriptions, comments)

•robustness

• testing

• techniques for code reuse
•working in teams

Z-2708/14/01

Knowledge and Skills (cont.)

•Data structures and algorithms
•Analysis of complexity

Big-O notation

•Classic ADTs: List, Queue, Stack

•Sorting and Searching, incl. Binary Search, quadratic
sorts, QuickSort, MergeSort

•Tree concepts

•Binary Trees and traversals

•Binary Search Trees

•Tables and hashing

