
CSE 143 Y

Y-108/12/01

Highlights of Tables and
Hashing

Tables: Ch. 11, pp.515-522
Hashing: Ch. 12 pp.598-604

CSE 143

Y-208/12/01

Looking Up Data
•A common pattern in many programs is to look up
data
•Find student record, given ID#
•Find phone #, given person’s name
•A CS example: a compiler’s “symbol table”

look up identifier to find its type, location, etc.

•Because it is so common, many data structures
for it have been investigated
•We could use arrays, linked lists, general trees, binary
search trees, etc.

•Could also step back and consider an abstract data type
for looking things up: a Table

Y-308/12/01

Table Terminology
•Key: Portion of pair used to look up data, like an
index (aka domain value)

•Value: Portion of pair that contains data (aka
range value)

aTable:
“4476542K”
“3828122E”
“24601JVJ”

23,440

“994802WE”
“8675309A”

Key (employee ID) Value (salary)

27,640
15,203
45,210
28,776

Y-408/12/01

Table ADT
•Characteristics of table ADT type

•Set of key/value pairs

•No duplicate keys

•Operations on tables
•Retrieve value given key

• Insert value at key

•Delete key and associated value from table

•Uses:
•Phone book, class roster, book index, databases

•Sometimes also called a dictionary or map

Y-508/12/01

Example of Operations
// phone book example: name is key, phone# is
value

Table pb;

pb.insert(“Sarah”, 5552345);

pb.insert(“Richard”, 3450011);

pb.insert(“Bart”, 6661212);

int bartsNumber = pb.retrieve(“Bart”);

pb.remove(“Richard”);

Y-608/12/01

Structures for Efficient Retrieval

•In many Table applications, retrieve is the most
common operation
•So retrieve needs to be efficient

•Many different data structures are possible
•Array (sorted or unsorted?), List, Binary tree, Binary
search tree. But not… stack, queue

•Footnote: Some languages (Perl, Javascript) contain a
built-in “associative array” construct

•With a sorted array and binary search, retrieve
would be O(log N)
•Same for binary search tree find (assuming reasonably
balanced tree)

CSE 143 Y

Y-708/12/01

Can we do better than O(log N)?

•Answer: Yes … sort of, if we're lucky.
•General idea: take the key of the data record
you’re inserting, and use that number directly as
the item number in a list (array).

•Example:
•Assume you want quick access to a table of your
friends. All of them have unique social security numbers
(in the range 000-00-0000 to 999-99-9999).

• If you had an array with 1,000,000,000 elements, each
friend could be instantly located in the array by their
social security number.

•What’s wrong with the above scheme?

Y-808/12/01

Hash Functions
•Basic idea:

•Don't use the key value directly.

•Given an array of size B, use a hash function, h(x),
which maps the given record key x to some (hopefully)
unique index (“bucket”) in the array.

0

1

h(x)

B-1

x
h

Y-908/12/01

Hashing and Tables
•Hashing gives us another implementation of Table
ADT

•Find (retrieval) algorithm: Hash the key; this gives
an index; use it to find the value stored in the table

•If this scheme worked, it would be O(1)
•Great improvement over Log N.

•Main problems
•Finding a good hash function

•Collisions
•Wasted space in the table

Y-1008/12/01

An Apparent Sidetrack
•Problem to solve: Given a list of n integers,
determine if there is a pair of duplicate values

37591 31576 64085 42782 25475 70900 79953 76186

67887 84848 81309 30822 77867 45852 65289 8322

79367 40520 58053 16030 34723 22116 41073 60522

34399 31616 85965 82102 73707 38316 153 11282

 7623 61416 10741 46686 73123 69780 65105 21866

75567 5760 66525 80214 63835 48652 49593 42066

20055 16248 12213 35758 12147 13828 7729 2266

13263 57984 73181 34246 51755 58053 31817 52754

23863 9160 56677 62462 65715 68404 48097 66762

37519 52480 28045 68294 71131 6252 81689 51570

72119 71944 9797 77822 56563 67348 51553 86986

88303 10656 6925 89654 63099 25036 84393 47426

Y-1108/12/01

Element Uniqueness: Two Solutions

1. Nested loop: for each element in the array, scan
the rest of the array to see if there is a duplicate.
•O(n2)

2. Sort the data. Then scan array (once) for
duplicates.
•O(nlog n) time to sort, O(n) to scan.

•Anything simpler??
•Any solution that looks like hashing?

Y-1208/12/01

Element Uniqueness (2)
•Step 1: Assign to buckets, based on value mod
100

37591 31576 64085 42782 25475 70900 79953 76186

67887 84848 81309 30822 77867 45852 65289 8322

79367 40520 58053 16030 34723 22116 41073 60522

34399 31616 85965 82102 73707 38316 153 11282

 7623 61416 10741 46686 73123 69780 65105 21866

75567 5760 66525 80214 63835 48652 49593 42066

20055 16248 12213 35758 12147 13828 7729 2266

13263 57984 73181 34246 51755 58053 31817 52754

23863 9160 56677 62462 65715 68404 48097 66762

37519 52480 28045 68294 71131 6252 81689 51570

72119 71944 9797 77822 56563 67348 51553 86986

88303 10656 6925 89654 63099 25036 84393 47426

CSE 143 Y

Y-1308/12/01

Element Uniqueness (3)
•Step 2: Look inside each bucket for duplicates

37591 31576 64085 42782 25475 70900 79953 76186

67887 84848 81309 30822 77867 45852 65289 8322

79367 40520 58053 16030 34723 22116 41073 60522

34399 31616 85965 82102 73707 38316 153 11282

 7623 61416 10741 46686 73123 69780 65105 21866

75567 5760 66525 80214 63835 48652 49593 42066

20055 16248 12213 35758 12147 13828 7729 2266

13263 57984 73181 34246 51755 58053 31817 52754

23863 9160 56677 62462 65715 68404 48097 66762

37519 52480 28045 68294 71131 6252 81689 51570

72119 71944 9797 77822 56563 67348 51553 86986

88303 10656 6925 89654 63099 25036 84393 47426

Y-1408/12/01

Hashing Functions
•The hash function we choose depends on the type of the

key field (the key we use to do our lookup).
• There are zillions of possible hash functions, but...

• Finding a good hash function can be hard

•Example:
• Student Ids (integers)

h(idNumber) = idNumber % B

eg. h(678921) = 678921 % 100 = 21

• Names (char strings)
h(name) = (sum over the ascii values) % B

eg. h(“Bill”) = (66+105+108+108) % 100 = 87

Y-1508/12/01

Collisions
•Collisions occur when multiple items are mapped
to same location

h(idNumber) = idNumber % B
h(678921) = 21
h(354521) = 21

•Issues
•Relative size of table to number of data items
•Choice of hash function

•With a bad choice of hash function we can have
lots of collisions

•Even with a good choice of hash functions there
may be some collisions

Y-1608/12/01

Collision Resolution
•One strategy: Bucket hashing (aka open hashing)
•Each cell (bucket) in the array is the head of a
linked list of items:

0

1

h(x)

B-1

A J K

Q

X Bx
h

Many other solutions have been studied

Y-1708/12/01

Analysis of hash table ops
•Insert is easy to analyze:

• It is just the cost of calculating the hash value O(1), plus
the cost of inserting into the front of a linked list O(1)

•Retrieve and Delete are harder. To do the
analysis, we need to know:
•The number of elements in the table (N)

•The number of buckets (B)
•The quality of the hash function

Y-1808/12/01

Hashing Analysis (2)
•We’ll assume that our hash function distributes
items evenly through the table, so each bucket
contains N/B items (N/B is called the load factor)

•On average, doing a lookup or a deletion is
O(N/B) (Which is O(1), if N/B is constant)

•Using a good hash function and keeping B large
with respect to N, we can guarantee constant time
insertion, deletion, and lookup

•Note that this means growing (rehashing) the
hash table as more items are inserted.

CSE 143 Y

Y-1908/12/01

Open vs. Closed Hashing
•Open hashing uses linked lists for the buckets
•What is closed hashing??
•All data is stored in the array

• If there is a collision, the next available cell is used

•Avoids overhead of linked lists and works well in practice

•Example: hash the following into a table of size 10
17, 23, 47, 52, 71, 86, 63, 96

 0 1 2 3 4 5 6 7 8 9

Y-2008/12/01

Dynamic Hashing
•Another implementation concept
•As number of stored records increases,
dynamically increase the number of buckets

•Brute force: make a new (larger) array and copy
(rehash) all the data to it

•More subtle implementations are also possible

Y-2108/12/01

Hashing and Files
•We’ve spoken of the hashed data as being stored
in an array (in memory)

•Hashing is also very appropriate for disk files
•Efficient look-up techniques for disk data are
essential
•Disks are thousands of times slower than memory
•Even a LogN look-up algorithm is too slow for a
database application!

•Many structures we have studied (linked lists, trees,
etc.) do not scale well to large disk files
•Hashing does scale well

Y-2208/12/01

Four Drawbacks to Hashing
•Finding a good hash function

•Risk of bad behavior

•Dealing with collisions
•Simplest method: use linked list for buckets

•Wasted space in the array
•Not a big deal if memory is cheap

•Doesn’t support ordering queries (such as
we would want for a real dictionary)

Y-2308/12/01

Summary
•Hash tables are specialized for Table (Dictionary)
operations: Insert, Delete, Lookup

•Principle: Turn the key field of the record into
a number, which we use as an index for
locating the item in an array.

•O(1) in the ideal case; less in practice
•Problems: collisions, wasted space
•Implementations: open hashing, closed hashing,
dynamic hashing

•Highly suitable for database files, too

