CSE 143

Binary Search Trees

[Chapter 10]
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A Problem

Finding avalue in a binary tree potentially means
visiting every node

 Searching a sorted array would still be faster (via
binary search)

If weimposed some ordering on the tree, maybe
we could speed things up...

 Leadsto the concept of abinary search tree (BST)
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Binary Search Trees (BST)

» Ordering constraints: for every node v,
— All datain left subtree of v < value of v
— All datain right subtree of v > vadueof v
— Note: no duplicate values

¢ A binary tree with these constraints is called a
binary search tree (BST)

 Prerequisite: Theitems must have a concept of
“<” and “>"
— Doesthislimit usto ints, doubles, etc.?

— No! Just need to be able to compare two items

« In C++, we can even use operator overloading to define <, >
etc. for any class.
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BSTsMay Not Be Unique

« Given aset of values, there could be many
possible BSTs
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Examples and Non-Examples

A Binary Search Tree  NotaBinary Search Tree
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Finding aniteminaBST

find (root, 6) find (root, 10)

root
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Code For Finding an Item
If we have abinary search tree, we can locate an item like this:

// true iff “item occurs in tree with given root”
bool find(BTreeNode *root, int item) {
if ( root == NULL
return false;
else if (item == root->data
return true;
else if (item < root->data)
return find(root->left, item);
else
return find(root-s>right, item);
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Running time of BST £ind
* Bestcase O(1),itemisat root

* Worst case: O (h), whereh isheight of tree
e Leadsto aquestion:
— What is the height of abinary search tree with N nodes?
e “Full” tree (2¢ nodes at each depth d) is
"shallowest" case:

CN=ohi1 root

-h = log,(N+1) - 1 = O(log N) O

— logarithmic running time for find Q@ @
@0w w©
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Running time of £ind (2)

* What if treeisn’t balanced?

* Worst caseis degenerate tree
—Height =N, the number of nodes
¢ Running time of £ind, worst-case, iso (N)
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Inserting inaBST

Toinsert anew key:
* Two base cases:
—If tree is empty, create new node for item
—If root holds key, return (no duplicate
keys allowed)
* Recursive case:

— If key <root'svalue, (recursively) insert in left
subtree, otherwise insert in right subtree
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Example

Add 8§, 10, 5, 1, 7, 11 to an initially empty BST,
in that order:
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Code For Inserting in aBST

// Add data to tree with given root
void insert (BTreeNode *&root, int data) {
if ( root == NULL ) {
root = new BTreeNode;
root->left = NULL;
root->right = NULL;
root->item = data;
return;
}
if (data < root->item)
insert (root->left, data);
if (data > root->item
insert (root->right, data);

} 08/12/01
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Example (2)

* What if we change the order in which the numbers
are added?

e Add1,5,7,8,10,11toaBST, in that order
(following the agorithm):
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Complexity of Insert

* Basecase: 0(1)

¢ How many recursive calls?

— For each node added, takes O (H) , where n
isthe height of the tree

e Again, what is height of tree?

— Balanced trees yields best-case height of
0(log N) for N nodes

— Degenerate trees yield worst-case height of
O (N) for N nodes

— For random insertions, expected height is
O(log N) --true, but not simpleto prove
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Deleting an Item from a BST

e Aneasy strategy: "lazy" deletion

— have aspecia bool in the node to mark the node as
“deleted” or not

— leave the nodein the tree
e Thehard way. Must deal with 3 cases
— 1. Thedeleted item has no children (easy)
— 2. Thedeleted item has 1 child (harder)
— 3. Thedeleted itemas 2 children (way hard)
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Deletion Algorithm

First find the node (call it N) to delete.

— Will also need apointer to N's parent

e If Nisaledf, just deleteit.

 If N hasjust one child, have N’s parent bypass N
and point to N’ s child.

 If N has two children:

— Replace N’ sitem with the smallest item K of theright
subtree

— (Recursively) delete the node that had K (thisnode is
now useless)

» Note: The smallest item alwayslives at the leftmostg gggper”
of asubtree (why?) X-16

Code for Delete

Use two mutually recursive functions:
« void deletel tem(int item, BTreeNode *&t);
— find and delete the node containing “item”

« void deleteNode(BTreeNode * & t);
— delete the root node (only)
« precondition: t = NULL
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Deletion (3): Finding the Node
e Thisisthe “easy” part:

void deleteItem(int item,BTreeNode*&t) {
if (t != NULL) {
if (item == t->data)
deleteNode (t) ;
else if (item > t->data)
deleteItem(item, t->right);
else

deleteItem(item, t->left);
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Deletion (4): Deleting the Node

void deleteNode (BTreeNode*&t) {
if (t->left && t->right) { // 2 children
t->data = findMin (t->right);
deletelItem(t->data, t->right);

} else { // 0 or 1 child

BTreeNode* oldval = t;

if (t->left) // left child only
t = t->left;

else if (t->right) // right child only
t = t->right;

else // no children
t = NULL;

delete oldval; //delete this node

} 08/12/01
x

Deletion (5): Finding Min

 All that remainsis to figure out how to find the
minimum valueinaBST

* Remember, the minimum element lives at the
leftmost “corner” of aBST
// PRECONDITION: t is non-NULL
int findMin (BTreeNode* t)
{
assert (t != NULL) ;
while (t->left != NULL)
t = t->left;
return t->data;

}
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Magic Trick

« Suppose you had abunch of numbers, and inserted
them al into an initially empty BST.

» Then suppose you traversed the tree in-order.

» The nodes would be visited in order of their
vaues. In other words, the numbers would come
out sorted!

e Thisis TreeSort: another sorting algorithm.

— O(N log N) most of thetime
— not an “in-place” sort

« Trivia to program if you already have aBST
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Preview of CSE326/373:
Balanced Search Trees

« BST operations are dependent on tree height

- 0(log N) for N nodesif treeisbalanced
- 0(N) if treeis not

» Canweensuretreeis always balanced?

— Yes insert and delete can be modified to keep
the tree pretty well balanced
« Actually there are severd different balanced tree data
structures
— Exact details are complicated
— Resultsin0 (1log N) “find” operations, evenin worst
case
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BST Summary

e BST = Binary Treeswith ordering invariant
* Recursive BST search

¢ Recursve insert, delete functions

O (H) operations, where 1 is height of tree
0(log N) for N nodesin balanced case

e O(N) inworst case
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