CSE 143

Binary Search Trees

[Chapter 10]

08/12/01

A Problem

Finding avalue in a binary tree potentially means
visiting every node

 Searching a sorted array would still be faster (via
binary search)

If weimposed some ordering on the tree, maybe
we could speed things up...

 Leadsto the concept of abinary search tree (BST)

08/12/01

Binary Search Trees (BST)

» Ordering constraints: for every node v,
— All datain left subtree of v < value of v
— All datain right subtree of v > vadueof v
— Note: no duplicate values

¢ A binary tree with these constraints is called a
binary search tree (BST)

 Prerequisite: Theitems must have a concept of
“<” and “>"
— Doesthislimit usto ints, doubles, etc.?

— No! Just need to be able to compare two items

« In C++, we can even use operator overloading to define <, >
etc. for any class.
08/12/01

BSTsMay Not Be Unique

« Given aset of values, there could be many
possible BSTs

08/12/01

Examples and Non-Examples

A Binary Search Tree NotaBinary Search Tree

08/12/01

Finding aniteminaBST

find (root, 6) find (root, 10)

root

08/12/01

Code For Finding an Item
If we have abinary search tree, we can locate an item like this:

// true iff “item occurs in tree with given root”
bool find(BTreeNode *root, int item) {
if (root == NULL
return false;
else if (item == root->data
return true;
else if (item < root->data)
return find(root->left, item);
else
return find(root-s>right, item);

08/12/01

Running time of BST £ind
* Bestcase O(1),itemisat root

* Worst case: O (h), whereh isheight of tree
e Leadsto aquestion:
— What is the height of abinary search tree with N nodes?
e “Full” tree (2¢ nodes at each depth d) is
"shallowest" case:

CN=ohi1 root

-h = log,(N+1) - 1 = O(log N) O

— logarithmic running time for find Q@ @
@0w w©
08/12/01 s

Running time of £ind (2)

* What if treeisn’t balanced?

* Worst caseis degenerate tree
—Height =N, the number of nodes
¢ Running time of £ind, worst-case, iso (N)

08/12/01

Inserting inaBST

Toinsert anew key:
* Two base cases:
—If tree is empty, create new node for item
—If root holds key, return (no duplicate
keys allowed)
* Recursive case:

— If key <root'svalue, (recursively) insert in left
subtree, otherwise insert in right subtree

08/12/01
X

Example

Add 8§, 10, 5, 1, 7, 11 to an initially empty BST,
in that order:

08/12/01
X

Code For Inserting in aBST

// Add data to tree with given root
void insert (BTreeNode *&root, int data) {
if (root == NULL) {
root = new BTreeNode;
root->left = NULL;
root->right = NULL;
root->item = data;
return;
}
if (data < root->item)
insert (root->left, data);
if (data > root->item
insert (root->right, data);

} 08/12/01
X

Example (2)

* What if we change the order in which the numbers
are added?

e Add1,5,7,8,10,11toaBST, in that order
(following the agorithm):

08/12/01

Complexity of Insert

* Basecase: 0(1)

¢ How many recursive calls?

— For each node added, takes O (H) , where n
isthe height of the tree

e Again, what is height of tree?

— Balanced trees yields best-case height of
0(log N) for N nodes

— Degenerate trees yield worst-case height of
O (N) for N nodes

— For random insertions, expected height is
O(log N) --true, but not simpleto prove

08/12/01

Deleting an Item from a BST

e Aneasy strategy: "lazy" deletion

— have aspecia bool in the node to mark the node as
“deleted” or not

— leave the nodein the tree
e Thehard way. Must deal with 3 cases
— 1. Thedeleted item has no children (easy)
— 2. Thedeleted item has 1 child (harder)
— 3. Thedeleted itemas 2 children (way hard)

(®) @
o b @ osnzior X-15

Deletion Algorithm

First find the node (call it N) to delete.

— Will also need apointer to N's parent

e If Nisaledf, just deleteit.

 If N hasjust one child, have N’s parent bypass N
and point to N’ s child.

 If N has two children:

— Replace N’ sitem with the smallest item K of theright
subtree

— (Recursively) delete the node that had K (thisnode is
now useless)

» Note: The smallest item alwayslives at the leftmostg gggper”
of asubtree (why?) X-16

Code for Delete

Use two mutually recursive functions:
« void deletel tem(int item, BTreeNode *&t);
— find and delete the node containing “item”

« void deleteNode(BTreeNode * & t);
— delete the root node (only)
« precondition: t = NULL

08/12/01

Deletion (3): Finding the Node
e Thisisthe “easy” part:

void deleteItem(int item,BTreeNode*&t) {
if (t != NULL) {
if (item == t->data)
deleteNode (t) ;
else if (item > t->data)
deleteItem(item, t->right);
else

deleteItem(item, t->left);

08/12/01
X

Deletion (4): Deleting the Node

void deleteNode (BTreeNode*&t) {
if (t->left && t->right) { // 2 children
t->data = findMin (t->right);
deletelItem(t->data, t->right);

} else { // 0 or 1 child

BTreeNode* oldval = t;

if (t->left) // left child only
t = t->left;

else if (t->right) // right child only
t = t->right;

else // no children
t = NULL;

delete oldval; //delete this node

} 08/12/01
x

Deletion (5): Finding Min

 All that remainsis to figure out how to find the
minimum valueinaBST

* Remember, the minimum element lives at the
leftmost “corner” of aBST
// PRECONDITION: t is non-NULL
int findMin (BTreeNode* t)
{
assert (t != NULL) ;
while (t->left != NULL)
t = t->left;
return t->data;

}

08/12/01

Magic Trick

« Suppose you had abunch of numbers, and inserted
them al into an initially empty BST.

» Then suppose you traversed the tree in-order.

» The nodes would be visited in order of their
vaues. In other words, the numbers would come
out sorted!

e Thisis TreeSort: another sorting algorithm.

— O(N log N) most of thetime
— not an “in-place” sort

« Trivia to program if you already have aBST

ADT. 08/12/01 o1

Preview of CSE326/373:
Balanced Search Trees

« BST operations are dependent on tree height

- 0(log N) for N nodesif treeisbalanced
- 0(N) if treeis not

» Canweensuretreeis always balanced?

— Yes insert and delete can be modified to keep
the tree pretty well balanced
« Actually there are severd different balanced tree data
structures
— Exact details are complicated
— Resultsin0 (1log N) “find” operations, evenin worst
case

08/12/01
X-22

BST Summary

e BST = Binary Treeswith ordering invariant
* Recursive BST search

¢ Recursve insert, delete functions

O (H) operations, where 1 is height of tree
0(log N) for N nodesin balanced case

e O(N) inworst case

08/12/01
X

