
X

08/12/01
X-1

CSE 143

Binary Search Trees

[Chapter 10]

08/12/01
X-2

A Problem

• Finding a value in a binary tree potentially means
visiting every node

• Searching a sorted array would still be faster (via
binary search)

• If we imposed some ordering on the tree, maybe
we could speed things up...

• Leads to the concept of a binary search tree (BST)

08/12/01
X-3

Binary Search Trees (BST)

• Ordering constraints: for every node v,
– All data in left subtree of v < value of v
– All data in right subtree of v > value of v
– Note: no duplicate values

• A binary tree with these constraints is called a
binary search tree (BST)

• Prerequisite: The items must have a concept of
“<” and “>”
– Does this limit us to ints, doubles, etc.?
– No! Just need to be able to compare two items

• In C++, we can even use operator overloading to define <, >
etc. for any class.

08/12/01
X-4

BSTs May Not Be Unique

• Given a set of values, there could be many
possible BSTs

08/12/01
X-5

Examples and Non-Examples

9

4

2 7

3 6 81

12

15

14

9

8

2 7

3 5 61

12

15

14

A Binary Search Tree Not a Binary Search Tree

08/12/01
X-6

Finding an item in a BST

9

4

2 7

3 6 81

12

15

14

find(root, 6)

root
9

4

2 7

3 6 81

12

15

14

find(root, 10)

root

NULL

X

08/12/01
X-7

Code For Finding an Item
If we have a binary search tree, we can locate an item like this:

// true iff “item occurs in tree with given root”
bool find(BTreeNode *root, int item) {
 if (root == NULL)
 return false;
 else if (item == root->data)
 return true;
 else if (item < root->data)
 return find(root->left, item);
 else
 return find(root->right, item);

}

08/12/01
X-8

Running time of BST find
• Best case: O(1), item is at root

• Worst case: O(h), where h is height of tree

• Leads to a question:
– What is the height of a binary search tree with N nodes?

• “Full” tree (2d nodes at each depth d) is
"shallowest" case:
– N = 2h+1 - 1
– h = log2(N+1) - 1 = O(log N)

– logarithmic running time for find

9

4

2 7

12

15

root

10

08/12/01
X-9

Running time of find (2)
• What if tree isn’t balanced?

• Worst case is degenerate tree
– Height = N, the number of nodes

• Running time of find, worst-case, is O(N)

9

12

15

18

root

08/12/01
X-10

Inserting in a BST
To insert a new key:
• Two base cases:

– If tree is empty, create new node for item
– If root holds key, return (no duplicate

keys allowed)
• Recursive case:

– If key < root’s value, (recursively) insert in left
subtree, otherwise insert in right subtree

08/12/01
X-11

Example

Add 8, 10, 5, 1, 7, 11 to an initially empty BST,
in that order:

08/12/01
X-12

Code For Inserting in a BST
// Add data to tree with given root

void insert(BTreeNode *&root, int data) {

 if (root == NULL) {

 root = new BTreeNode;

 root->left = NULL;

 root->right = NULL;

 root->item = data;

 return;

 }

 if (data < root->item)

 insert(root->left, data);

 if (data > root->item)

 insert(root->right, data);

}

X

08/12/01
X-13

Example (2)
• What if we change the order in which the numbers

are added?

• Add 1, 5, 7, 8, 10, 11 to a BST, in that order
(following the algorithm):

08/12/01
X-14

Complexity of Insert
• Base case: O(1)
• How many recursive calls?

– For each node added, takes O(H), where H
is the height of the tree

• Again, what is height of tree?
– Balanced trees yields best-case height of
O(log N) for N nodes

– Degenerate trees yield worst-case height of
O(N) for N nodes

– For random insertions, expected height is
O(log N) -- true, but not simple to prove

08/12/01
X-15

Deleting an Item from a BST
• An easy strategy: "lazy" deletion

– have a special bool in the node to mark the node as
“deleted” or not

– leave the node in the tree

• The hard way. Must deal with 3 cases
– 1. The deleted item has no children (easy)

– 2. The deleted item has 1 child (harder)

– 3. The deleted item has 2 children (way hard)
12

 6 15

 4 10 20 08/12/01
X-16

Deletion Algorithm
• First find the node (call it N) to delete.

– Will also need a pointer to N’s parent

• If N is a leaf, just delete it.

• If N has just one child, have N’s parent bypass N
and point to N’s child.

• If N has two children:
– Replace N’s item with the smallest item K of the right

subtree

– (Recursively) delete the node that had K (this node is
now useless)

• Note: The smallest item always lives at the leftmost “corner”
of a subtree (why?)

08/12/01
X-17

Code for Delete
Use two mutually recursive functions:

• void deleteItem(int item, BTreeNode *&t);
– find and delete the node containing “item”

• void deleteNode(BTreeNode *&t);
– delete the root node (only)

• precondition: t != NULL

08/12/01
X-18

Deletion (3): Finding the Node

• This is the “easy” part:

void deleteItem(int item,BTreeNode*&t) {

 if (t != NULL) {

 if (item == t->data)

 deleteNode(t);

 else if (item > t->data)

 deleteItem(item, t->right);

 else

 deleteItem(item, t->left);

 }

}

X

08/12/01
X-19

Deletion (4): Deleting the Node
void deleteNode(BTreeNode*&t) {

 if (t->left && t->right) { // 2 children

 t->data = findMin(t->right);

 deleteItem(t->data, t->right);

 } else { // 0 or 1 child

 BTreeNode* oldVal = t;

 if (t->left) // left child only

 t = t->left;

 else if (t->right) // right child only

 t = t->right;

 else // no children

 t = NULL;

 delete oldVal; //delete this node

 }

} 08/12/01
X-20

Deletion (5): Finding Min
• All that remains is to figure out how to find the

minimum value in a BST

• Remember, the minimum element lives at the
leftmost “corner” of a BST

// PRECONDITION: t is non-NULL

int findMin(BTreeNode* t)

{

 assert(t != NULL);

 while (t->left != NULL)

 t = t->left;

 return t->data;

}

08/12/01
X-21

Magic Trick
• Suppose you had a bunch of numbers, and inserted

them all into an initially empty BST.

• Then suppose you traversed the tree in-order.

• The nodes would be visited in order of their
values. In other words, the numbers would come
out sorted!

• This is TreeSort: another sorting algorithm.
– O(N log N) most of the time

– not an “in-place” sort

• Trivial to program if you already have a BST
ADT. 08/12/01

X-22

Preview of CSE326/373:
Balanced Search Trees

• BST operations are dependent on tree height
– O(log N) for N nodes if tree is balanced

– O(N) if tree is not

• Can we ensure tree is always balanced?
– Yes: insert and delete can be modified to keep

the tree pretty well balanced
• Actually there are several different balanced tree data

structures

– Exact details are complicated
– Results in O(log N) “find” operations, even in worst

case

08/12/01
X-23

BST Summary
• BST = Binary Trees with ordering invariant
• Recursive BST search
• Recursive insert, delete functions
• O(H) operations, where H is height of tree
• O(log N) for N nodes in balanced case
• O(N) in worst case

