
S

07/24/01 S-1

CSE 143

Object-Oriented Design

[Chapters 1, 8]

07/24/01 S-2

Design Methodology
• Designing and building a system is a lot of work
• Changes may result in lots of wasted work! How

to minimize their impact?
– Use a good design methodology

• or design philosophy or design paradigm

– Procedure and structure by which a design is created

• Some popular paradigms
– Top-down design

• Typical for Pascal, C
• Can be used with C++

– Object-oriented design
• Typical for Java, Ada, Smalltalk
• Can be used with C++

07/24/01 S-3

Top-Down Design
• Also called:

– Structured Design
– Functional Decomposition

• Focus on overall control flow
– Think of problem in terms of functions and algorithms

and how they act on the data
• Input-> Process -> Output

– Often have a layered or hierarchical approach:
• make successively more detailed refinements to design

– Call graph depicts the overall design

07/24/01 S-4

Object-Oriented Design

• Instead of control flow and functions, concentrate
on different kinds of entities (“objects”) in the
problem (data-driven approach)

• Object = Collection of data and operations on that
data

• All phases of design are in terms of objects
• Often easier to prototype a design or adapt to

changing conditions

07/24/01 S-5

Designing in the OO Style
Step 1: Identify the objects in the problem, and the

operations they should have
Often, objects are nouns and operations are verbs in the English

description of the problem

Step 2: Determine organization of objects and operations
How do the objects relate to one another? Are there

similarities, differences? Is-a and has-a relationships? Are
there containers holding multiple objects?

Drawing an object hierarchy diagram might help

What messages pass between objects?

Step 3: Implement objects (C++ classes, or off-the-shelf)
Tightly encapsulate data and operations

07/24/01 S-6

Three Cornerstones of OO
Programming

• Encapsulation
– Packaging data and functions together as classes

– Hiding implementation details from clients

• Inheritance

• Overloading (and related concepts)
– polymorphic (overloaded) functions

– virtual functions and dynamic dispatch

– operator overloading

S

07/24/01 S-7

Historical Notes
• The object model was first thoroughly developed in

Smalltalk
– Smalltalk still looks modern!

• C was as far from object-oriented as you get can
get

• C++ = C + O.O. features
– Considered an ugly hybrid by many

• Java retains much C++ syntax
– but simpler, purer

• Many modern programming and scripting
languages use aspects of O.O
– Javascript, Perl, Visual Basic, Python, etc.

