
CSE 143 R

R-107/22/01

CSE 143

Dynamic Dispatch and Virtual
Functions

[Chapter 8 pp.354-370]

R-207/22/01

Substituting Derived Classes
•Recall that an instance of a

derived class can always
be substituted for an
instance of a base class
• Derived class guaranteed to

have (at least) the same data
and interface as base class

•But you may not get the
behaviour you want!

//client function (not a method)
void printPoint(Point pt)
{
 pt.print(cout);
 //the question: which print?
}

Point p(1.0, 9.0);
ColorPoint cp(6.0, 7.0, red);

printPoint(p);
p = cp; //information lost
printPoint(p);
printPoint(cp);

R-307/22/01

Pointers And Inheritance
•You can also substitute a

pointer to a derived class
for a pointer to a base
class
• There’s still that guarantee

about data and interface

• Also holds for reference types

• No information disappears!!

•Unfortunately, we still have
the same problems…

//client function
void printPoint(Point *ptr)
{
 ofstream ofs("point.out");
 ptr->print(ofs);
 ofs.close();
}

Point *pptr = new Point(1.0, 9.0);
ColorPoint *cpptr =
 new ColorPoint(6.0, 7.0, red);

printPoint(pptr);
printPoint(cpptr);

pptr = cpptr;
printPoint (pptr);

R-407/22/01

Static And Dynamic Types
•In C++, every variable has a static and a dynamic
type
•Static type is declared type of variable

Every variable has a single static type that never changes

•Dynamic type is type of object the variable actually
contains or refers to
Dynamic type can change during the program!

•Up to now, these have always been identical
•But not any more!

Point *myPointPointer = new ColorPoint(3.14, 2.78, green);

R-507/22/01

"Dispatch"
•"Dispatching" is the act of deciding which piece of
code to execute when a method is called

•Static dispatch means that the decision is made
statically, i.e. at compile time
•Decision made based on static (declared) type of
receiver

Point *myPointPointer = new ColorPoint(3.14, 2.78, green);

myPointPointer->print(cout);
 // myPointPointer is a Point*, so call Point::print

R-607/22/01

Dynamic Dispatch

•C++ has a mechanism for declaring individual
methods as dynamically dispatched
• If an overriding function exists, call it
•The decision is made at run-time
•Sometimes called "late binding".

•The mechanism: In base class, label the function
with virtual keyword
•Overriding versions in subclasses don’t need the
virtual keyword
 but please use the keyword anyway for better style

CSE 143 R

R-707/22/01

Example Of Dynamic Dispatch

class Point { //base class
public:
 virtual void print(ostream& os);
 …
};

class ColorPoint : public Point { //derived class
public:
 virtual void print(ostream& os);
 …
};

//in a client
Point *p = new ColorPoint(3.13, 5.66, ochre);

p->print(cout);
 // calls ColorPoint::print()

R-807/22/01

Dynamically-Dispatched Calls

•The compiler notices that Point::print is defined
as virtual

•Instead of just calling Point::print, it inserts
extra code to look at information attached to the
object by new to decide what function to call

•This is slightly slower than static dispatch
•Almost always too minor a speed penalty to worry about

Point *p = new ColorPoint(3.13, 5.66, ochre);
p->print(cout);

R-907/22/01

When Does This Happen?
•Dynamic dispatch ONLY happens when BOTH of
these two conditions are met:
1. The object is accessed through a pointer (or reference)
2. The method is virtual

•In ALL other cases, you get static dispatch
•Two common useful cases

•Parameters: Objects passed by pointer or reference to
a function

•Arrays: an array of pointers to objects

R-1007/22/01

Example Application
•An array of pointers to objects derived from the
same base class:
mammal * zoo[20]; // An array of 20 pointers.

•All the objects pointed to are mammals, but some
might be dogs, people, aardvarks, hedgehogs,
etc.

•Each class might have its own methods for
behavior like “scream” “fight” “laugh”, etc.
• If I write zoo[i]->laugh() I want to get the appropriate
behavior for that type of animal
Won’t happen unless laugh is virtual in mammal class

R-1107/22/01

Contrast
•mammal mlist[20];

•all array elements are of the same type

•Everything in the list is treated as a mammal, period
regardless of whether methods are virtual or not

•mammal * vmlist[20];
•Each critter behaves like "mammal" for the non-virtual
functions, and like its own particular kind of mammal for
the virtual methods.

R-1207/22/01

Virtual Destructors
•If a class contains a destructor and is used as a
base class, then the destructor should be
declared virtual
•Ensures that correct destructor is called when a pointer
to that class is deleted, even if there are no other virtual
functions

•Puzzle: constructors are never virtual!! (Why?)

Class XYZ {
public:

...
virtual ~XYZ();
...

};

CSE 143 R

R-1307/22/01

Abstract vs Concrete Classes

•Some classes are so abstract that instances of
them shouldn’t even exist
•What does it mean to have an instance of widget? of
pushbutton? of Animal?

•It may not make sense to attempt to fully
implement all functions in such a class
•What should pushbutton::clicked() do?

•An abstract class is one that should not or can not
be instantiated - it only defines an interface
•declaration of public methods, partial implementation

•A concrete class can have instances
R-1407/22/01

Abstract Class in C++
•"abstract" and "concrete" are not keywords in C++
•Abstract classes are recognized by being classes
with unimplementable methods
•"pure virtual functions" (next slide)

•Such a class is only intended to be used as a
base class

R-1507/22/01

Pure Virtual Functions
•Syntax: append "= 0" to base method declaration

•A “pure virtual” function is not implemented in the
base class
•must implement in derived classes

•Compiler guarantees that class with pure virtual
functions cannot be instantiated

•If you call a pure virtual function, you’ll use the
version from some derived class

class pushbutton : public widget {
public:
 virtual void clicked() = 0;
};

pushbutton *b = new quitbutton;
b->clicked(); R-1607/22/01

Draw the Hierarchy
class animal {...
 virtual dance () = 0;

... };

class mammal : public
animal {...

 dance ();

 walk ();
...};

class hedgehog : public
mammal {...

// no "dance" method
dig ();
walk ();
walk (int, int);

...};

class seaUrchin : public
animal {...

dance ();
 sting ();
};

R-1707/22/01

What’s Legal / Which function is
called? (continued)

•animal annie;
•hedgehog * hp;

•hp->walk ();

•animal * ap = hp;

•ap -> dance();

•ap->walk();

•mammal * mp = hp;
•mp->walk();

R-1807/22/01

Example Hierarchy
class person {...
 virtual walk () = 0;

 virtual run ();

...};

class student : public person
{...

 enroll ();
 virtual walk ();

...};

class freshman : public
student {...

enroll ();

virtual run ();

...};

CSE 143 R

R-1907/22/01

What’s Legal / Which function is
called? (continued)

•person paula;
•student *stu = new freshman();

•stu->enroll();

•student sara = *stu;

•sara.run();

•person *pp = stu;

•pp->run();
•pp->walk();

•freshman *fred = pp;

•fred->enroll();

R-2007/22/01

Draw hierarchy & call graph
Start your drawing at
plug::dispatch()

class plug {

 public:

 virtual void boof()

 { bang(); }

 virtual void bang()

 { nalg(); }

 void dispatch()

 { trog->boof(); }

 protected:

 plug *trog;

};

class lir : public plug {

 public:

 virtual void boof()

 { biff(); }

}

class vop : public plug {

 public:

 virtual void bang()

 { whing(); }

 protected:

 int log;

}

