
CSE 143 K

K-106/18/01

Safer Programming via const

Textbook p. 25; 130; A17

CSE 143

K-206/18/01

Safe Programming Practices

•Goal: protect us from our enemies
•Protect client from implementer

•Protect implementor from client

•Protect us from ourselves!

•Public/private is one safety technique
•Avoiding global variables is another
•Passing pointers and references around can
make things less safe
•but can’t always be avoided

•const: a safety tool provided in C++

K-306/18/01

Many Uses for const
•You’ve used it as a replacement for #define

•const int MAX_NAMELENGTH = 60;
•rather than
•#define MAX_NAMELENGTH 60

•In the text, you will notice other usages:
class listClass {
 public:
 bool ListIsEmpty () const;
...}
void BinarySearch (const int A[], int First, ...);

K-406/18/01

Basic Meaning: "Can’t Change"

•const means "if you try to change this thing, I will
complain, real loud"

•Also: "if I suspect somebody might try to change
it, I will try to warn about it."

•Enforced by compiler
•Adds a level of fail-safeness

•but can get complicated in certain cases

•const is a part of the type
•A non-const converts automatically to const when
needed, but not vice-versa

K-506/18/01

const Variables: True Constants

•Simple and easy to use
const double PI = 3.14159;
...

PI = 3.0; //complain
cin >> PI; //complain

•const variables could be global, could be local, or
could be member variables of a class, as
appropriate

•A const variable must be initialized when defined
•Otherwise, would be no way to give it a value!

const double PI; // not allowed

K-606/18/01

const as Argument
•Consider these function calls:

• funct (PI); //example A

• funct (&PI); //example B

•If compiler can determine that the function may try to alter
PI: complain.

•If compiler is assured that function cannot alter PI: no
complaint.

•Some prototypes: which ones generate complaints if const
variables are used as arguments?
void funct (double i);

void funct (double * i);

void funct (double &i);

CSE 143 K

K-706/18/01

Fill In the Table

•OK; C (const error)
 caller: funct (PI) funct (&PI)
called
void funct (double)
void funct (double &)
void funct (double *)

K-806/18/01

const on a Pass-by-Value Parameter

void recompute (const int N) {
...

N = N+1; //??

...

}

const here may protect the implementer of recompute from
a programming error.

But -- doesn’t add protection to the client (caller) -- the value
is passed by copy anyway.

K-906/18/01

const Parameters Case 2
void safe (const team TArray[], int N) {

...
N = N*2; // complain?
TArray[N].setGamesWon = 162; // complain?
...

}
•Calling safe

const int asize = 30;
team theArray [asize];
...
safe (theArray , 30); //?
safe (theArray , asize); //?

K-1006/18/01

Reference Parameters
void comp2 (int & N) {

...
N = N+1;
...

}
•Calling comp2

const int asize = 30;
int bsize = 4;
comp2 (asize); //?
comp2 (bsize); //?
comp2 (4); //?

K-1106/18/01

const Reference Parameters
void comp3 (const int & N) {

...
N = N+1;
...

}
•Calling comp3

const int asize = 30;
int bsize = 4;
comp3 (asize); //?
comp3 (bsize); //?
comp3 (4); //?

K-1206/18/01

const methods
• Special notation, special meaning

class listClass {

private:
int listLength;

 public:

 bool ListIsEmpty () const;

...}

•Means: "this function won’t change any member variable
of the class."
• Note: says nothing about parameters

• Means this function can be called on a const instance of this class

•Puzzler: would const ever make sense on a constructor??

CSE 143 K

K-1306/18/01

const Advice
•For true constants, use const variables

•with whatever scope is appropriate

•remember that these cannot be passed to non-const
reference parameters

•Use const on member functions whenever possible
•Use const on parameters when appropriate

•const on a value parameter is a check on the implementer

•const on a ref. parameter protects the caller, too.

•Adding const retroactively sometimes causes
cascades of changes, so put them in from the start.

K-1406/18/01

Fill In the Table

•OK; C (const error)
 caller: f1 (i) f1 (&i) f1 (PI) f1 (&PI)
called
void f1 (int)
void f1 (const int)
void f1 (int &)
void f1 (const int &)
void f1 (int *)
void f1 (const int *)

