
The SteveString Class

// SteveString.h
// Specifies a class that allows the
// user to use resizable arrays of chars.
#ifndef _STEVESTRING_H_
#define _STEVESTRING_H_

class SteveString {
 public:
 // our constructor
 SteveString ();

 // NEW: we want to have a copy constructor
 // so we can initialize SteveStrings with copies of
 // other SteveStrings
 SteveString (SteveString &);

 // add a char to our SteveString, resizing
 // if there isn’t enough room.
 void addItem(char x);

 // our destructor
 ~SteveString ();

 // NEW: we now overload operator+, so
 // that—like strings—we can concatenate using
 // the + operator in SteveStrings.
 SteveString& operator+(SteveString &);

 private:
 // current number of items in the SteveString
 int currentSize;

 // current size of the SteveString
 int totalCapacity;

 // our data, a pointer because we are going to
 // dynamically allocate it.
 char* data;
};

 #endif

Implementation of the SteveString Class:

#include “SteveString.h”

SteveString::SteveString(){
 totalCapacity = 10; currentSize = 0;
 data = new char[totalCapacity];
}

SteveString::SteveString(SteveString &other){
 // get other’s capacity and size
 totalCapacity = other.totalCapacity;
 currentSize = other.currentSize;
 // declare our data array
 data = new char[totalCapacity];
 // now copy other’s data. This is a DEEP copy
 for (int i = 0; i < totalCapacity; i++)
 data[i] = other.data[i];
 // we’re done! We now have a COMPLETE
 // copy of the data structure!
}

void SteveString::addItem(char x) {
 // is there room?
 if ((currentSize + 1) < totalCapacity) {
 currentSize++;
 data[currentSize] = x;
 return;
 }
 // there isn’t room, so we need to resize the array.
 else {
 totalCapacity = totalCapacity * 2;
 char * newData = new char[totalCapacity];
 for (int i = 0; i < currentSize; i++)
 newData[i] = data[i];
 delete [] data;
 data = newData;
 currentSize++;
 data[currentSize] = x;
 return;
 }
}

Implementation of the SteveString Class (continued):

SteveString& SteveString::operator+(SteveString &other){

 // first, we need to make a new array with the right
 // amount of space to hold both strings, and get some

 // new size values.
 int newCapacity = (totalCapacity + other.totalCapacity);
 int newSize = (currentSize + other.currentSize);
 char* newData = new char[newCapacity];

 // now, we need copy the first part into the new array
 for (int i = 0; i < currentSize; i++)
 newData[i] = data[i];

 // and now, the second part
 for (int x = currentSize; x < newSize; x++)
 newData[x] = other.data[(x - currentsize)];

 // now we can delete our current data and reassign the
 // new data.
 delete [] data;
 data = newData;
 totalCapacity = newCapacity;
 currentSize = newSize;

 // new, we return a reference to the SteveString, since
 // the + operator needs to return something.
 return *this;

 // that’s it! We’re done!!
}

SteveString::~SteveString(){
 delete [] data;
}

Some review questions to ponder. . .

• What’s the difference between deep and shallow copy?

• In what order, when using instances of classes inside other classes,

are constructors called? Desctructors?

• What does const do? What are some different ways to use it? What

are the differences between these ways?

• What’s the difference between static, dynamic, and automatic mem-

ory? Can you give an example of each?

• What is the ‘this’ keyword? How is it used? Why do we have it?

• What is the difference between an alias, or reference variable, and a

pointer variable?

• How many difference constructors can we have in a class? How

does the compiler know which one to call?

• What is a destructor? What does it do? Why is it needed?

• What does ‘operator overloading’ mean? Why do we do it?

• What is a ‘memory leak’? Give an example. What is a ‘dangling

pointer’? Give an example of that too.

• How many licks does it take to get to the center of a tootsie-roll pop?

Write an algorithm that calculates this. (ok, so maybe you don’t
need to know this one. . .)

• What happens when you don’t specify a constructor and/or decon-

structor in a class?

• What is multiple inclusion? Describe the fix we have in order to

solve the problem.

