The SteveString Class

Il SteveString.h

Il Specifies aclass that allows the

I user to use resizable arrays of chars.
#ifndef STEVESTRING H_
#define  STEVESTRING H_

class SteveString {

H
#endif

public:
/] our constructor
SteveString ( );

I NEW: we want to have a copy constructor

I/ so we can initialize SteveStrings with copies of
I/ other SteveStrings

SteveString ( SteveString & );

// add a char to our SteveString, resizing
/I if there isn’'t enough room.
void additem( char x );

/[ our destructor
~SteveString ();

// NEW: we now overload operator+, so

Il that—like strings—we can concatenate using
/I the + operator in SteveStrings.

SteveString& operator+( SteveString & );

private:
I/ current number of items in the SteveString
int currentSize;

/I current size of the SteveString

int total Capacity;

// our data, a pointer because we are going to
/l dynamically alocate it.
char* data;



| mplementation of the SteveString Class:

#include “ SteveString.h”

SteveString::SteveString( ){
total Capacity = 10; currentSize = 0;
data = new char[total Capacity];

}

SteveString::SteveString( SteveString & other ){
/I get other’ s capacity and size
total Capacity = other.total Capacity;
currentSize = other.currentSize;
I/ declare our data array
data = new char[total Capacity];
// now copy other’sdata. ThisisaDEEP copy
for (inti = 0; i < totalCapacity; i++)
data[i] = other.datd[i];
// we're done! We now have a COMPLETE
/] copy of the data structure!

}

void SteveString::additem( char x ) {
/I is there room?
if ((currentSize + 1) < total Capacity) {

currentSize++;
data[ currentSize] = x;
return;
}
I/ there isn't room, so we need to resize the array.
else{
total Capacity = total Capacity * 2;
char * newData = new char[total Capacity];
for (inti =0; i < currentSize; i++)
newDatd[i] = datai];
delete [] data;
data = newData;
currentSize++;
data[currentSize] = x;
return;
}



| mplementation of the SteveString Class (continued):

SteveString& SteveString::operator+( SteveString & other )}

/I first, we need to make a new array with the right
// amount of space to hold both strings, and get some

I/ new size values.

int newCapacity = (total Capacity + other.total Capacity);
int newSize = (currentSize + other.currentSize);

char* newData = new char[newCapacity];

I/ now, we need copy the first part into the new array
for (inti =0; i < currentSize; i++)
newDatd[i] = datdi];

// and now, the second part
for (int X = currentSize; x < newSize; X++)
newData[Xx] = other.data[(x - currentsize)];

// now we can delete our current data and reassign the
Il new data.

delete [] data;

data = newData;

total Capacity = newCapacity;

currentSize = newSize;

Il new, we return a reference to the SteveString, since
I/ the + operator needs to return something.
return *this;

/] that'sit! W€ re donel!

SteveString::~SteveString( ){
delete [] data;
}



Some review questions to ponder. . .

What' s the difference between deep and shallow copy?

In what order, when using instances of classes inside other classes,
are constructors called? Desctructors?

What does const do? What are some different ways to use it? What
are the differences between these ways?

What'’ s the difference between static, dynamic, and automatic mem-
ory? Can you give an example of each?

What isthe ‘this' keyword? How isit used? Why do we have it?

What isthe difference between an alias, or reference variable, and a
pointer variable?

How many difference constructors can we have in aclass? How
does the compiler know which oneto call?

What is adestructor? What does it do? Why isit needed?
What does ‘ operator overloading mean? Why do we do it?

What isa‘memory leak’? Give an example. What is a‘dangling
pointer’? Give an example of that too.

How many licks does it take to get to the center of atootsie-roll pop?
Write an algorithm that calculates this. (ok, so maybe you don't
need to know thisone. . .)

What happens when you don’t specify a constructor and/or decon-
structor in aclass?

What is multiple inclusion? Describe the fix we have in order to
solve the problem.



