A CLOSE Look at the Anatomy of User-defined Stream 10

The function’s name,

operator<< (note no space) de-

notes that we are overloading
the << operator. Thiswill

work for many other operators
aswell, suchas+, -, = ==,

etc. We'll be coming back to

this!

A function that is declared asa
‘friend’ isafunction insde a
classthat isNOT amember
function, but can accessthe
private member data in that
class.

Thedeclaration:

friend ostream & operator<<(ostreamé& s, const classType& instanceName);

T A \
Parameter two is the instance
The oeve%rl caded << operar of the class we are overloading
tor needs to return some- << for. Notethatitisalsoa
thing that the cout object reference, ‘ cause it could be a
Wi IL unqlerhstand. Cout big data structure we don’t
V‘I’qor Swith ostreams, o want to waste space copying.
ence we will return a However, it hasaconst onit so
reference to an ostream. we don’t change it by accident.

Parameter oneis arefer-
ence to the current
ostream being outputted.
This means we can
change its contents by
outputting to it, because
it'sareference.

The |l mplementation

friend ostream & operator<<(ostreamé& s, const classType& instanceName){
/[output the class data to ostream sin any way we need to
s<<“DataField 1is: “ << instanceName.datal << *“ , and Data Field

2is. " << instanceName.data2;
returns; // important!

The Different Flavors of Memory in a Program

A short test:

Which of the three ways of using memory we discussed in class (Satic, Automatic,
and Dynamic) are each of the marked lines in the following code?

/Il Main.cpp

I/ Another useless program by Steve Martin
Il 7-9-01

intevilGlobal =1; //—1—1I

voidfoo (inta, intb) { //—2—1

a=Db;
}
int main () {
int *pointer = new int; // — 3 —//
intsteve=99; /| —4—|
foo(* pointer, steve);
return O;
{
Answers:
1. Stic
2. Automatic
3. Dynamic

4. Autométic

