
Trees 
 
There are many, many types of trees, and they are used EVERYWHERE in  
software!   
 
Here’s some of the types you should know: 
 

Non-Specialized Trees: 
 

A regular tree may look like this: 
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Which in reality would be represented in code like this: 

Does this have any special properties? 
 

What would we use a tree like this for?   
 

How would we move around, or traverse this tree?  (Is there more than one way?) 
 



Trees, part 2 
 

Binary Trees: 
 
Binary trees are a type of Trees.  Binary trees are important because we know ex-
actly how many children each node can have: 0, 1, or 2.  A binary tree in code 
would look like this: 
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This property allows us to assume that each node is directly reachable by its  
parent, enabling us to move around the tree in different ways. 
 
Now, lets look at a few specialized types of Binary Trees with some more  
requirements on them. 
 

 
Example: 

 
Binary Search Trees 

 
 



Trees, part 3 
 

Binary Search Trees (BST): 
 
A Binary Search Tree is a Binary Tree that has the requirement that for all nodes, 
children on the left of each node have a value that is less than that node, while 
children on the right  have values greater than each node. 
 
Example: 

Given this, how would I ALWAYS find the node that has the next-greater value 
than the root? 
 
If I wanted to find the contents of one node in a regular Binary Tree, how much 
time would it take?  Why? 
 
Best Case: O(      )            Worst Case: O(      )         Average Case: O(      ) 
 
Now, compare this to the time it would take for a Binary SEARCH Tree to find 
one node: 
 
Best Case: O(      )            Worst Case: O(      )         Average Case: O(      ) 
 
You can see the power in Binary Search TreesTrees.  Now, lets look at a few spe-
cialized types with 
 
Now, an interesting question:  If I said there was a way to make a Binary 
Search Tree that would have a worst case find time that was ALWAYS the 
same as the average case find time, would you believe me? 
 
What would I have to do in order to do this? 
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