
Trees

There are many, many types of trees, and they are used EVERYWHERE in
software!

Here’s some of the types you should know:

Non-Specialized Trees:

A regular tree may look like this:

null

data

next

child

data

next

child

data

next

child

data

next

child

data

next

child

data

next

child null

null null

null

(head)

Which in reality would be represented in code like this:

Does this have any special properties?

What would we use a tree like this for?

How would we move around, or traverse this tree? (Is there more than one way?)

Trees, part 2

Binary Trees:

Binary trees are a type of Trees. Binary trees are important because we know ex-
actly how many children each node can have: 0, 1, or 2. A binary tree in code
would look like this:

(root)

data

Left

Right

data

Left

Right

data

Left

Right

data

Left

Right

data

Left

Right

data

Left

Right

data

Left

Right
null null null null

This property allows us to assume that each node is directly reachable by its
parent, enabling us to move around the tree in different ways.

Now, lets look at a few specialized types of Binary Trees with some more
requirements on them.

Example:

Binary Search Trees

Trees, part 3

Binary Search Trees (BST):

A Binary Search Tree is a Binary Tree that has the requirement that for all nodes,
children on the left of each node have a value that is less than that node, while
children on the right have values greater than each node.

Example:

Given this, how would I ALWAYS find the node that has the next-greater value
than the root?

If I wanted to find the contents of one node in a regular Binary Tree, how much
time would it take? Why?

Best Case: O() Worst Case: O() Average Case: O()

Now, compare this to the time it would take for a Binary SEARCH Tree to find
one node:

Best Case: O() Worst Case: O() Average Case: O()

You can see the power in Binary Search TreesTrees. Now, lets look at a few spe-
cialized types with

Now, an interesting question: If I said there was a way to make a Binary
Search Tree that would have a worst case find time that was ALWAYS the
same as the average case find time, would you believe me?

What would I have to do in order to do this?

4

2

3 1

6

