
Sorting

Sorting is one of the most useful things a computer can do, along with searching.
However, it is also one of the most computationally demanding things a computer
must do.

We saw two sorts in class, SelectionSort and MergeSort. Here they are again
described in psuedocode—don’t worry about actual code too much:

SelectionSort:

Function SelectionSort(array data, int size) {
 for i = 0 until size {
 for j = i + 1 until size {
 if array[j] < array[i] {
 if j != i {
 swap array[j], array[j]
 }
 }
 }
 }
}

MergeSort (first called with 0 going into low, and array size into high):

Function MergeSort(array data, int low, int high) {
 if low < high {
 middle = (low + high) / 2
 MergeSort(array, low, middle)
 MergeSort(array, middle + 1, high)
 MERGE(A, low, middle, high) // the money’s all here! Merge 2 arrays
 }
}

What are the primary differences between the two?

What are the worst case O() of these two?

Note the two different ways the problem of sorting a series is approached.
MergeSort is a lot faster because a divide-and-conquer mentality is used.

Sorting, part 2

There is another sort that uses the same mentality that is often even faster, and is
much more efficient with memory: QuickSort.

The idea behind QuickSort is basically the same as the idea behind MergeSort.
We divide and conquer. However, QuickSort doesn’t use as much memory as
MergeSort and if implemented right is often just as good.

However, the code is complicated!! Let’s just look at how QuickSort works:

Steps in QuickSort (read carefully and DRAW this process!)

1. Choose a pivot (easiest way is to just choose first element)
• If not the first element, swap pivot with first element.

2. Maintain two pointers to elements, one at element directly after pivot—we’ll
call it start—and the other at the end of the data array—we’ll call it end.

3. As long as the element pointed two by start is less than the pivot, move start up
the array.

4. If an element is found that is greater than the pivot, stop moving start.

5. Look at end. Move end down the array until an element less than the pivot is
found.

6. Swap start and end. Move end to next value.

7. Repeat steps 3 to 6 until start and end cross.

8. Swap end and pivot.

9. Recursively run again on half the array—go to step 1 on both halves.

Best case for QuickSort: O () ?

Worst case for QuickSort: O () ?
 Could we make this better? How?

