
Function test (int a, b) {
 return a + b;
}

Function findmybigO () {
 int total;
 for each x from 0 to N {
 for each y from 0 to N {
 total = total + test(x, y);
 }
 }
}

Big O notation

Big O notation is used to compare algorithmic running times. It is NOT an exact
measure of how fast an algorithm is. Instead, it will give you an idea of how fast
an algorithm will compute compared to other algorithms.

How to apply Big O notation to an algorithm:

Check out the following example psuedo-code. . .

Adding, Returning x,y
Constant O(1) op-

eration

Function test (int a, b) {
 return a + b;
}

Function findmybigO () {
 int total;
 for each x from 0 to N {
 for each y from 0 to N {
 total = total + test(x, y);
 }
 }
}

What is the big-O running time of function findmybigO()?

Here’s what you should look at when asked a question like this:

Allocate ‘x’,’y’
Constant O(1)

operation

Changing y N times
Linear O(N)

operation

Copying x,y
Constant O(1)

operation

Allocate ‘total’
Constant O(1)

operation

Changing x N times
Linear O(N)

operation

Doing the adding, call to test,
and assignment to total.

Constant O(1) operation

Big O Notation, part 2

So, starting at the top of findmybigO(), we have:

O(1) + O(1) + N * (N * (O(1) + O(1) + O(1)))

 = (2 * O(1)) + N * (3 * O(1) * N)

 = (2 * O(1)) + (3 * O(1) * N2)

Now, remember that we are looking for an UPPER BOUND. This means that we
take the part of this function that has the FASTEST GROWTH as our answer. A
good way to see if one function grows faster than the other is to graph them and

see! (Or, you could check out derivatives if you’re really not sure. . .)

We know that N2 grows way faster than 2 * O(1), so we toss that term. So our
answer to the question is:

O(3N2), or O(N2)

Example 2: How good ARE those data structures?

Remember this chart (I’ve changed it a bit)? Lets go through it again with a little
more accuracy. . .

What do you think each cell should be in Big O notation?

Type of ADT Creation Adding Deleting Find Item Merge

Arrays Easy Hard Hard Easy Fair

Single Lists Easy Easy Hard Hard Good

Double Lists Easy Medium Medium Hard Good

Trees (soon!) Varies Varies Varies Varies Varies

Worst Case Comparison of Lists and Arrays

