
Queues

Most important things to know about queues:

• First in, First out (FIFO)
• They are also a Collection ADT, in that they maintain a collection of items.
• They can be implemented with any type of ordered list object, which right now in-

cludes lists, arrays, and vectors (stretchy arrays).
• They have many uses! (Can you think of a few?)

Queue example: the PRINT QUEUE

When you print something on a computer, the print job goes into a queue. The last job
to be submitted to the queue is the last job printed.

Using linked lists as our collection object, let’s implement a print queue:

There are two main methods to Queues. Insert, which inserts something at the end of
the queue, and Remove, which takes off the lead element and returns it.

In psuedo-code, here’s what we’ll have to do for each of these:

Insert (string filename):
 - Make a new node with the correct filename.
 - Insert this node at the tail of the list.
 Special case: What if the list is empty? Do we need to do anything extra
 to maintain the properties of the queue?

Remove (??):
 - Get a pointer to the last element.
 - Make a copy of the last element.
 - Return the last element.
 Special case: If you maintain a pointer to the end of the list, don’t forget to
 update it!

Now, lets look at the real thing. . .

Queues, part 2

// class spec for PrintQueue class

#include "Node.h"

class PrintQueue {
 public:
 PrintQueue();
 ~PrintQueue();
 void insert(string);
 Node remove();
 private:
 Node* head;
 Node* tail;
};

// implementation of the PrintQueue class
#include "PrintQueue.h"

PrintQueue::PrintQueue() { head = tail = NULL; }

void PrintQueue::insert(string name) {
 if (tail == NULL) {
 tail = new Node(name);
 head = tail; }
 else {
 tail->next = new Node(name);
 tail = tail->next; }
}

Node PrintQueue::remove() {
 Node temp1 = *head;
 Node* temp2 = head;
 head = head->next;
 delete temp2;
 return temp1;
}

PrintQueue::~PrintQueue() {
 Node* temp;
 while (head != NULL) {
 temp = head->next;
 delete head;
 head = temp; }
}

// class spec for Node class
class Node {
 public:
 Node(string name) { jobName = name; next = NULL; }
 void print() { cout << jobName << endl; }
 string jobName; Node* next;
};

#include "PrintQueue.h"

int main () {

 PrintQueue MsWord;

 MsWord.insert("homework receipt for Steve");
 MsWord.insert("homework receipt for Brian");
 MsWord.insert("Letter to grandma!");

 (MsWord.remove()).print();
 (MsWord.remove()).print();
 (MsWord.remove()).print();

 return 0;

}

Queues, part 3

Now, given the following main program, what is outputted to the screen?

The answer is below, straight out of MSVC++:

Note the order that the results are removed from the queue!!

Is this a LIFO or a FIFO ADT? How do we know?

