Side 1: Stacks

Most important things to know about stacks:

Firstin, Last out (FILO)

They are a Collection ADT, in that they maintain a collection of items,

They can be implemented with any type of ordered list object, which right now
includes lists, arrays, and vectors (stretchy arrays).

Have many uses! (can you think of afew)

One of the most popular uses for stacksis parsing! Asan example. . .

Example: Sack-based parsing of mathematical expressions.

One of the best ways to parse fully parenthesized (eg each separate operation is
parenthesized) mathematical expressions is through using a stack. If you own an
HP calculator, this'll be very familiar!

Here'swhat | mean by parsing expressions. How does the computer do the fol-
lowing?

(1+(2+(3+(4))))=10

Pop Quiz: Look carefully at the above equation. What kind of function do you
think we could write in order to solve problems like this?

Now, lets use a stack to solve the problem. Again, assume that each operation has
been fully parenthesized—I.e., there won't be anything like this: (1 + 2 + 3). In-
stead, an operation of that type will look like this: ((1 + 2) + 3)
How would we do this??
Answer: Here' swhat our code should do:
See open parentheses, push whatever isimmediately after it onto the stack.
Every time we see a closed parentheses, we need to evaluate the top two mem-
bers of the stack, pop them, and replace them with the resuilt.
Try it with a different problem:
(1+2)+(@3+(4+5)

Does our stack solution still work?



