
Linked Lists

What’s a Linked List?

Linked lists are like arrays except that programmer manages the links between
data nodes instead of the compiler. They consist of collections of objects, each
containing data and methods along with and one or more pointers to the ‘next’

object[s] in the list.

There are many different types of linked lists! As an example, here are a few:

Single Linked Lists: Lists that can only be traversed one way. Very simple to
build.

Double Linked Lists: Lists that can be traversed both ways. A little more

difficult to build.

Trees: Lists that are built on a ‘tree’ principle. There are hundreds of different
types of trees, and before this class is over we might see a couple of them!

data

pointer

data

pointer

data

pointer

data

pointer
head

head
data

pointer

pointer

data

pointer

pointer

data

pointer

pointer

data

pointer

pointer null

null

data

next

child

data

next

child

data

next

child

data

next

child

data

next

child

data

next

child

data

next

child null

null

null

null

null

(head)

Building a Linked List

The first thing you should do when confronted by a problem is decide whether an
array or a linked list would be a better solution. Here’s a table to explain what this
means:

The hardest part of building a linked list is making sure you keep track of all your
pointers and avoid memory leaks. The best way to do it is to spend a LOT of time
in the design phase. DRAW PICTURES!

Example:

It is the year 2020, and you’ve been asked by the Admiral of Fleet Command,
Brian Tjaden, to build a program that will keep track of all the starships in the
fleet.

You decide that since starships are coming out all the time and its easiest to add to
a linked list, that’s what you’re going to use.

Step One: Design

What type of linked list are we going to use? Why? What will be stored in the
data section of each node?

Lets list all the functionality we’re going to need for our list.

Now, lets draw some example pictures for these so we know what our code is sup-
posed to do.

Step Two: Code it up!

How will we implement each of our methods?

Type of ADT Creation Adding Deleting Sorting Memory Use

Arrays Easy Hard Hard Easy Fair

Single Lists Easy Easy Hard Hard Good

Double Lists Easy Medium Medium Hard Good

Trees Varies Varies Varies Varies Good

Worst Case Comparison of Lists and Arrays

Recursion and Linked Lists

As was said in lecture, linked lists are naturally recursive. This means that it’s
really easy to write recursive functions to traverse the list!

Take out a sheet of paper. Given the following class:

class Node {
 public:
 int data;
 Node* next;
 Node* prev;
}

Write two recursive functions dealing with the following list made up of objects
of type Node:

1) Write a recursive function that prints it from head to tail, and an example of

how to call it.

2) Write a recursive function that prints it in reverse, or tail to head, and an exam-
ple of how to call it.

Hint: Remember what we talked about with recursion! What’s the base case—
the condition that will kick out of the recursion—going to be for these functions?

Don’t worry, we’ll go through the answers in a moment.

Node* head
data: 2

next

prev

data: 1

next

prev

data: 4

next

prev

data: 3

next

prev null

Node* tail

null

Answers:

1)
void printHeadtoTail(Node* ptr){

 if (ptr == NULL) return;
 else {
 cout << ptr->data << endl;
 printHeadtoTail(ptr->next);
 return;
 }
}

printHeadtoTail(head);

2) Two possible ways to do this!

I) void printTailtoHead(Node* ptr){

 if (ptr == NULL) return;
 else {
 printTailtoHead(ptr->next);
 cout << ptr->data << endl;
 return;
 }
}

printTailtoHead(head);

- OR -

II)

void printTailtoHead(Node* ptr){

 if (ptr == NULL) return;
 else {
 cout << ptr->data << endl;
 printTailtoHead(ptr->prev);
 return;
 }
}

printTailtoHead(tail);

