
More on Abstract classes, part 3

Step 3: Test out our implementation. . .

Look at the preceding code carefully. What will the following main program out-
put? Any errors?

// main

#include "NinjaTracker.h"

int main () {
 NinjaTracker SectionAB_ARMY;

 SectionAB_ARMY.outputNinja();

 return 0;
}

No errors. Here’s what is output to the screen—the complete record of our Army
of Ninja!

This is a quick and easy program using Abstract Classes! Note how we have an
array of pointers to a base class, initialize them to hold instances of derived

classes, and then use virtual to call methods in the derived class.

Can you think of some uses for this? (HW4, perhaps. . .?)

Recursion

Recursion is a powerful tool that can be used to solve just about any problem. A
recursive function works by checking to see if the end case has been reached,

doing a part of a problem, and then calling itself again to do the rest of the
problem.

The hardest part of grasping recursion is thinking recursively! Do the following

problems recursively:

5 + 3 + 1 + 0 = ?

10! = ?

Just about anything you can do iteratively (with loops) you can do recursively!
As an example, convert the following familiar while loop into a recursive

function.

// inside “readfile.cpp”
// get data from a file into an array

int data[100];
int i = 0;
ifstream in("test.txt")

while(!in.eof()) {
 in >> data[i];
 i++;
}

// recursive function readfile
int* readfile(int* data, ifstream& in, int i) {
 if (in.eof()) return data;
 else {
 in >> data[i];
 i++;
 return readfile(data, in, i);
 }
}

The answer:

Recursion, Example 2

As a final example, lets implement the following recursive function:

We want a function that will continually take in integers and average them. This
is a simple standalone function that we can call and then get a final value from.

As a hint, here’s how the function is called in main, along with its prototype:

double findAverage (int input, int total, int numterms);

int main () {
 double Average;

 Average = findAverage(0, 0, 0);

 cout << "The Average is: " << Average << endl;

 return 0;
}

The answer:

double findAverage (int input, int total, int numterms) {
 cout << "Please enter the next number: ";
 cin >> input;
 cout << endl;
 if (cin.good()) {
 total = total + input;
 numterms++;
 return findAverage(0, total, numterms);
 }
 else return ((double)total / (double)numterms);
}

