M oreon Abstract classes, part 1

Example of using abstract classes. the NinjaTracker class
We're going to design a program that keeps track of CSE 143 Section AB’sninja
forces. To do this, we're going to have a NinjaTracker class, which will hold
some kind of data structure that conmtains all of our ninja.

However, there' s a problem: there are many types of Ninjain our army!
Luckily for us, we know about class inheritance. Using this, let’s create our class.
Sep 1. DESGN
Lets design a class hierarchy that will fit what we need to do. We should have one
class of type NinjaTracker, that HAS A data structure (we'll use an array) of Nin-

jas. The array should be an array of pointers so we can have each e ement point
to a separate Ninja allocated dynamicaly.

NinjaTracker Class

Ninja* [ ]

However, there are several different types of Ninjal  So, there are going to have to
be classes derived from the Ninja Class.

MORE IMPORTANTLY, since every Ninjais either aHeder Ninja, a Sword
Ninja, or aBow Ninja, we make the Ninja class abstract.

Ninja Class

\/

HealerNinja Class SwordNinja Class BowNinja Class

Now, every element in our array of Ninja* class can point to anything of type
HeaerNinja, SwordNinja, or BowNinjal (Remember how this works?)



M or e on Abstract classes, part 2

Sep 2: Implement!

I/l The NinjaTracker class
#include "Ninja.h"
#include "BowNinja.h"
#include "SwordNinja.h"
#include "HealerNinja.h"

class NinjaTracker {
public:

private:

H

Ninja* data[3];

NinjaTracker() { data[0] = new SwordNinja(); data[1] = new BowNinja();

data[2] = new HealerNinja(); }

void outputNinja() { data]0]->outputType(); datg] 1]->outputType();

data] 2]->outputType(); }

~NinjaTracker() { delete data[0]; delete data[1]; delete data[2]; }

classNinja{
public:

H

/I Abstract Ninja class
#include <iostream>
using namespace std;

virtual void outputType()=0;

/I BowNinja class inherits from Ninja
#include "Ninja.h"

class BowNinja: public Ninja {
public:
virtual void outputType() {
cout <<"| am aBow NINJA!" << endl; }

H

/I HealerNinja class inherits from Ninja
#include "Ninja.h"

class HedlerNinja : public Ninja {
public:
virtual void outputType() {
cout <<"l| am aHeder NINJA!" << endl; }

H

#include "Ninjah"

public:

/I SwordNinja class inherits from Ninja

class SwordNinja: public Ninja{

virtual void outputType() {
cout << "l am a Sword NINJA!" << endl; }




M or e on Abstract classes, part 3

Sep 3: Test out our implementation. . .

Look at the preceding code carefully. What will the following main program out-
put? Any errors?

[/ main
#include "NinjaTracker.h"

int main () {
NinjaTracker SectionAB_ARMY;

SectionAB_ ARMY .outputNinj&();

return O;

No errors. Here'swhat is output to the screen—the complete record of our Army
of Ninja

#, "\ Documents and Settings'stevaroo’Desktop’
I am a Sword MWINJAY
I am a Bow MINJA?

I am a Healer NINJA?
Prezz any key to continue

Thisisaquick and easy program using Abstract Classes! Note how we have an
array of pointersto a base class, initialize them to hold instances of derived
classes, and then use virtual to call methods in the derived class.

Can you think of some usesfor this? (HW4, perhaps. . .?)



