
Dynamic Dispatch

So we’ve now covered Inheritance and Static Dispatch. . .now how does
inheritance work with dynamic memory?

Remember our original classes? What is outputted when the following is run?

The following is outputted:

What if I tried to do this?

 steve * STEVE;
 STEVE = new brian(); // does this work?

No, it doesn’t work. Why?

//main file
#include "brian.h"
#include "jeff.h"
#include "steve.h"

int main () {
 brian * BRIAN;
 BRIAN = new brian(); // no problem, right?

 brian * BRIAN2;
 BRIAN2 = new jeff(); // uh-oh. . .what about this?

 brian * BRIAN3;
 BRIAN3 = new steve(); // weird. . .??

 return 0;
}

Dynamic Dispatch, part 2

Now consider the following program:

//main file
#include "brian.h"
#include "jeff.h"
#include "steve.h"

int main () {
 brian * BRIAN;
 BRIAN = new brian();
 brian * BRIAN2;
 BRIAN2 = new jeff();
 brian * BRIAN3;
 BRIAN3 = new steve();

 BRIAN->speak();
 BRIAN2->speak();
 BRIAN3->speak();

 return 0;
}

This program compiles fine, but it might not do what you thought it would!
Here’s what is outputs:

What if we wanted to call the speak methods for the derived classes? Can we do
that using just a base class pointer?

. . .You bet we can!

Dynamic Dispatch, part 3

The key word is:

virtual

And we use it like so:

// class spec for brian class

class brian {
public:
 brian() { cout << "I know C++. . ." << endl;}
 virtual void speak() { cout << "I am the Lord of CSE 143!" << endl; }
};

// class spec for steve class

class steve : public jeff {
public:
 steve() { cout << ". . .And I can also do tricks!" << endl;}
 virtual void speak() { cout << "I know kung-fu." << endl; }
};

// class spec for jeff class

class jeff : public brian {
public:
 jeff() { cout << ". . .and everyone loves me for it!" << endl;}
 virtual void speak() { cout << "I sing most beautifully!" << endl; }
};

Note that we don’t really need the virtual in class steve, since it’s a derived class.
However, we put it there anyways since it lets us know what's going on.

Dynamic Dispatch, part 4

NOW what does this program output?

//main file
#include "brian.h"
#include "jeff.h"
#include "steve.h"

int main () {
 brian * BRIAN;
 BRIAN = new brian();
 brian * BRIAN2;
 BRIAN2 = new jeff();
 brian * BRIAN3;
 BRIAN3 = new steve();

 BRIAN->speak();
 BRIAN2->speak();
 BRIAN3->speak();

 return 0;
}

You guessed it!

