
Inheritance: More on Constructors

What if I don’t want to call the default constructor all the time? What if I want to
use both the base and derived constructors?

That’s where some new notation enters in.

Consider these renovations to our classes:

// class spec for jeff class
class jeff : public brian {
public:
 jeff(string x, string y) : brian(x) { cout << "Jeff says, " << y << endl; }
};

// class spec for steve class
class steve : public jeff {
public:
 steve(string x, string y, string z) : jeff(x, y) {
 cout << "Steve says, " << z << endl; }
};

// class spec for brian class
class brian {
public:
 brian(string x) { cout << "Brian says, "<< x << endl; }
};

Now, what does the following output? Why?

//main file
#include "brian.h"
#include "jeff.h"
#include "steve.h"

int main () {
 steve test("moo!", "blah!", "poopypants!");
 return 0;
}

Inheritance: More on Constructors, part 2

Well, it outputs the following:

General rule of thumb:

If there is no alternate constructor from a base class specified in your
IMPLEMENTATION of a derived class constructor, then the default will always
run for the base class every time you instantiate an instance of the derived class.

Remember that the derived class ‘is a’ instance of the base class!

Example: the classes I showed earlier!

To SPECIFY an alternate constructor to run, you must use the following syntax:

Note that in order to use this, you must have a corresponding constructor
implemented in the base class. Otherwise, the compiler won’t know what to call.

This gives you precise control over what constructors are called and with what

arguments. . .nifty!

steve :: steve(string x, string y, string z) : jeff(x, y) { }

Constructor
arguments

The call to the base class
constructor, passing in

arguments from the call to
the derived constructor.

Constructor
name, etc

