
CSE 143 Su01 Midterm 1 page 1 of 6

Part I: Short Answer (4 questions, 20 points total)

Answer all of the following questions. READ EACH QUESTION CAREFULLY.
Answer each question in the space provided on these pages. Budget your time so you
spend enough on the programming questions at the end. Each question is weighted
differently. Keep your code as short as possible. Good luck.

1. (5 points) Write the swap function for the code below. Your swap function should
correctly swap values so that the program below will output the line “Swap function
works correctly!”

#include <iostream>
using namespace std;

int main () {
int x = 5;
int y = 2;
swap(x, &y);

if ((x == 2) && (y == 5))
cout << “Swap function works correctly!” << endl;

return 0;
}

void swap(int &num1, int * num2) {
int temp = num1;
num1 = *num2;
*num2 = temp;

}

CSE 143 Su01 Midterm 1 page 2 of 6

2. (4 points) Consider the following class declaration:

class Books {
public:

Books();
Books(string bName, int bPrice);
int getPrice(int bPrice);

private:
string name;
int price

};

In order to allow the user to change the price member variable, the designer has
decided to add a new member function setPrice to the class Books above. Explain
in words, the differences in the use of the const keyword in the following two possible
function declarations. What restrictions does const impose in each case?

(a) void setPrice(int bPrice) const;
(b) void setPrice(const int bPrice);

In case (a), the const method means that setPrice CANNOT change any data
member of the Books class. In this example, this doesn’t make any sense since the
point of the setPrice method is to change one of the data members (price).

In case (b), const protects the implementer of setprice by specifying that the
input parameter bPrice CANNOT be changed with in the setprice method.
Since the argument to setprice is copied into the parameter bPrice, const does
not affect the client.

CSE 143 Su01 Midterm 1 page 3 of 6

3. (4 points) Answer the following question based on the code below.

#include <iostream>
using namespace std;

void main() {
int* intPtr1 = new int[20];
for(int i = 1; i <= 20; i++)

intPtr1[i-1] = i;
int* intPtr2 = &intPtr1[2];
cout << intPtr2[3];
// YOUR CODE BEGINS

delete [] intPtr1;

}

(a) If there are errors in the above program, explain them below. If no errors exist, write
the program’s output below.

6

(b) In the space provided above, write code necessary to deallocate all dynamic memory
in the program.

CSE 143 Su01 Midterm 1 page 4 of 6

4. (7 points) Read the following class definition which exists in the file “point.h”

 // a point with integer coordinates on an <x,y> plane
class Point {
public:

Point(int x, int y); // construct point with given location
void setX(int newX); // set x coordinate to newX
void setY(int newY); // set y coordinate to newY
int getX(); // returns the x coordinate of this Point
int getY(); // returns the y coordinate of this Point

private:
… // details hidden

};

(a) What occurs when the following program is executed? Describe the output
produced, or, if errors exist, explain the problem(s).

#include <iostream>
#include "point.h"
using namespace std;

int main() {
Point p;
Point q;
p.setX(17);
p.setY(42);
q = p;
cout << q.getX() << endl;
return 0;

}

No default constructor exists for the Point class. This will cause an error. We
cannot create two Point objects in the first two lines of main without a default
constructor.

(b) Write a point member function which overloads the “+” operator so that a client
can add two points together. If p1 is a point object with coordinates x1 and x2, and p2
is a point object with coordinates y1 and y2, then the sum of p1 and p2 should have
coordinates x1+y1 and x2+y2.

Point Point::operator+(const Point & secondPoint) {
int sumX = getX() + secondPoint.getX();
int sumY = getY() + secondPoint.getY();
Point p(sumX, sumY);
return p;

}

CSE 143 Su01 Midterm 1 page 5 of 6

Part II. Programming Problem
(1 question with 2 parts, 15 points total)

5. (15 points) You are the owner of a comic book store and need to update your computer
software. You are currently using the following data structure to represent the comics.

class ComicData { // represents a single comic book
public:

string getName();
double getPrice();
int getQuantity();

private:
string mName; // Comic Name
double mPrice; // Comic book price.
int mQuantity; // number of this comic currently in the store

};

// ComicDatabase stores information about all comics in the store in a
// dynamic array of ComicData objects. The array is always full, i.e., the
// number of comics in the array equals the capacity of the array.
class ComicDatabase {
public:

ComicDatabase();
ComicData* restock(int quantity);
//Your Declaration Here

ComicDatabase(ComicDatabase & other);

private:
int size; // current number of comics in the database
ComicData *comics; // pointer to a dynamic array of ComicData

};

(a) The first part of your job is to implement a copy constructor for the
ComicDatabase class. Place your declaration for the copy constructor in the space
provided above, and your code in the space below.

ComicDatabase::ComicDatabase(ComicDatabase & other) {
size = other.size;
comics = new ComicData[size];
for (int i=0; i<size; ++i)

comics[i] = other.comics[i];
}

CSE 143 Su01 Midterm 1 page 6 of 6

(b) The second part of your assignment is to implement the restock function defined
above. This function should return a pointer to an array containing copies of all elements
in the comics array whose member variable mQuantity is less than or equal to the
quantity input parameter. Inside the restock function, you should dynamically
allocate sufficient memory for this array.

ComicData * ComicDatabase::restock(int quantity) {
// First we determine how many comics need restocking
int numberToRestock = 0;
for (int i=0; i<size; ++i) {

if (comics[i].getQuantity() <= quantity)
numberToRestock++;

}

// Then we create a dynamic array for these comics
ComicData * restockList = new ComicData[numberToRestock];
int restockCount = 0;
for (int j=0; j<size; ++j) {

if (comics[i].getQuantity() <= quantity) {
restockList[restockCount] = comics[i];
restockCount++;

}
}

return restockList;
}

