
CSE 143 Summer 2001 Final Exam page 1 of 12

Part I: Multiple Choice (14 questions, 28 points total)

Answer all of the following questions. Choose the best answer for each question. READ
EACH QUESTION CAREFULLY. Record your answer on the accompanying answer
sheet. All multiple choice questions are equally weighted. Budget your time so you
spend enough on the programming questions at the end.

int f1 (int & x, int y) {
 int temp;
 temp = x;
 x = x+y;
 y = temp;
 return temp;
}

int main () {
 int a=10, b=20;
 f1 (a, b);
 // line A
...
}

What is the value of b when we reach line A in the main program?

A. 10
B. 20
C. 30
D. Impossible to determine.

1.

E. There is a syntax error: the line before line A should be written
f1 (&a, b);

What is NOT true about constructors?

A. A constructor can initialize public member data of a class.
B. A constructor can initialize private member data of a class.
C. A constructor in a base class can be overridden by the derived class.
D. A constructor cannot have a return type, not even void.

2.

E. Multiple constructors for a class are legal, and they all have the same name.

CSE 143 Summer 2001 Final Exam page 2 of 12

IntQueue is a correctly implemented Queue data structure which stores integers.

IntQueue myQueue;

myQueue.enqueue(6);
int i1 = myQueue.dequeue();

if (myQueue.isEmpty())
 myQueue.enqueue(7);
if (myQueue.size() == 2)
 myQueue.enqueue(9);

myQueue.enqueue(1);
myQueue.enqueue(3);
int i3 = myQueue.dequeue();

After the above code is executed, what is stored in myQueue? (i.e., in what order
does the data appear in the queue, with the front element of the queue on the left
and the end element of the queue on the right?)

A. 3 1
B. 7 9 1
C. 7 1
D. 6 1 3

3.

E. 1 3

Suppose you see this in a correctly working program:

Foo * v1 = new Myclass [3];
Foo *v2 = v1;

From this alone, you can conclude that:

I. Myclass has a copy constructor.
II. Myclass has a constructor with one argument.
III. A destructor for Myclass has been implemented.

A. III only
B. II only
C. I only
D. I and III

4.

E. None of I, II, or III

CSE 143 Summer 2001 Final Exam page 3 of 12

Below is a listing of possible orders of growth for functions.

1. Exponential
2. Linear
3. Logarithmic
4. N*log(N)
5. Quadratic

What is the correct ordering of these growth functions in decreasing complexity?
(first = biggest order of growth, last = smallest order of growth)

A. 1 4 5 3 2
B. 1 5 4 3 2
C. 1 5 3 4 2
D. 1 5 4 2 3

5.

E. None of the above

The worst case complexities for MergeSort and QuickSort on data of size N are:
A. MergeSort: O(N)

QuickSort: O(N*logN)
B. MergeSort: O(logN)

QuickSort: O(N*logN)
C. MergeSort: O(N2)

QuickSort: O(N*logN)
D. MergeSort: O(N * logN)

QuickSort: O(N2)

6.

E. MergeSort: O(N2)
QuickSort: O(N2)

CSE 143 Summer 2001 Final Exam page 4 of 12

class A {
public:
 A() { cout << “A’s constructed.”; }
 void fun() { cout << “I am A”; }
};

class B : public A {
public:
 B() { cout << “B’s constructed.”; }
 void fun() { cout << “I am B”; }

};

Suppose the following statements are executed - what is the output?

int main() {
 A* foob;
 A* fab;
 fab = new B;
 fab->fun();
 return 0;
}

A. B’s constructed. I am A.
B. A’s constructed. A’s constructed. B’s constructed. I am B.
C. A’s constructed. B’s constructed. I am B.
D. A’s constructed. B’s constructed. I am A.

7.

E. Nothing, the compiler would report an error since you can’t allocate memory of
type B to a pointer of type A.

Consider the following function fooz.

void fooz(int N) {
 int x = 0;
 for (int i=0; i < N*N; i++) {
 while (x < N/2) {
 x = x+2;
 }
 x = 0;
 }
}

What is the asymptotic complexity of fooz in terms of N?

A. O(N3)
B. O(N2 log N)
C. O(N2)
D. O(N log N)

8.

E. O(N)

CSE 143 Summer 2001 Final Exam page 5 of 12

Suppose you are given a binary search tree containing more than one node. What is
true about the node containing the smallest value in the binary search tree?

I. It is located in the left subtree of the root.
II. Its left subtree must be empty
III. It cannot be the root
A. I only
B. II only
C. III only
D. I and II

9.

E. None are true

void displayData (int count) {
 Stack *m_stacks;
 m_stacks = new Stack[count];
 for (int i = 0; i < count; i++)
 m_stacks[i].Push(5);
 delete m_stacks;
}

Something may (or may not) be incorrect in the function above. Choose the
statement below which best describes any error or problem.

A. new Stack[count];
is an error, because an array size must be a constant.

B. delete m_stacks;
is a memory leak since [] are required when deallocating an array.

C. m_stacks = new Stack[count];
is an error, because m_stacks is a pointer, not an array.

D. m_stacks [i];
is an error, because m_stacks is a pointer, not an array.

E. m_stacks [i];
is an error because m_stacks[i] is uninitialized.

10.

F. No errors are present.

CSE 143 Summer 2001 Final Exam page 6 of 12

#include <iostream>
using namespace std;

class Mammal {
public:

virtual talk() {cout << "Talking ";}
};

class Cat: public Mammal {
public:

virtual talk() {cout <<"Meow ";}
};

int main ()
{

Cat c;
Mammal m = c;
Mammal * m_ptr = new Cat;
m.talk();
m_ptr->talk();
return 0;

}

What will be output by the program above?
A. Talking Meow
B. Meow Talking
C. Meow Meow
D. Talking Talking

11.

E. None of the above. The program contains a compile error.

Suppose you see this in a valid C++ implementation file:

Foobar * fb = new Fooz;

Which of the following are possibilities?

I. Foobar is the name of a class, and class Foobar is derived from the class Fooz
II. Fooz is the name of a class, and class Fooz is derived from the class Foobar
III. Fooz is the name of a member variable of the class Foobar
A. I only
B. II only
C. III only
D. II and III

12.

E. I and II

CSE 143 Summer 2001 Final Exam page 7 of 12

class Plane{
public:
 virtual landing() ;
 virtual int takeoff() = 0;
};

Which of the following statements are true based on the code above?

I. It is illegal to declare variables of type Plane
II. It is legal to declare an instance of Plane, but illegal to call the function
takeoff()
III. It is illegal to declare variables of type Plane*
IV. The function takeoff always returns an int equal to 0
A. I only
B. II only
C. III only
D. IV only

13.

E. I and III

CSE 143 Summer 2001 Final Exam page 8 of 12

The following program reads a number from cin and invokes the function
secret on it:

#include <iostream>
using namespace std;

void secret(int n) {
 if (n > 1) {
 secret(n-1);
 }
 cout << n << “ “;
}

int main() {
 int i;
 cin >> i;
 secret(i);
 return 0;
}

Indicate which of the following outputs might possibly be produced by the program,
given that the user enters an appropriate number:
I. 1 2 3 4 5
II. 5 4 3 2 1
III. 0 1 2 3 4
IV. 4 3 2 1 0

A. I only
B. II only
C. III only
D. IV only

14.

E. I and III
F. II and IV

CSE 143 Summer 2001 Final Exam page 9 of 12

Part II. Programming Problem (1 question, 22 points total)

16. (4 parts)

An important aspect of object oriented programming is the concept of code reusability. If
you can reuse old code, you don’t have to write it again and you can spend the time you
saved playing Ultimate. We will assume that the following code has already been written.

struct ListNode {
 int m_value;
 ListNode *next;
};

class List {
public:

// Constructor
 List();

// Returns true if list is empty, false otherwise
 bool isEmpty();

// Creates a new node containing value and inserts it at the
// front of the list

 virtual void insert(int value);

// Removes the 1st node containing value in the list, returns
// false if value is not present, true otherwise.

 virtual bool remove(int value);

// Returns true if value is present in list, false otherwise.
bool find(int value);

// Returns 1st value in the list, but does not remove the node.
 int returnTop();

// destructor
 virtual ~List() {deleteList(head);}

protected:
 ListNode *head;

void deleteList(ListNode * front);
};

CSE 143 Summer 2001 Final Exam page 10 of 12

a) The List destructor above contains one line of code: a call to the deleteList
method. Recursively implement the deleteList method below so that the List
destructor deallocates all appropriate dynamic memory (you should not change the
List destructor at all).

void List::deleteList(ListNode * front) {
if (front != NULL) {

deleteList(front->next);
delete front;

}
}

CSE 143 Summer 2001 Final Exam page 11 of 12

Now your assignment is to create a new list class OrderedList, based on List.
You should NOT alter the List class specification. This means creating a class
derived from List that maintains an “ordered list”. Your OrderedList class
should have an insert method and a remove method which meet the following
requirements:

1. The remove method from the List class removes from the list a node
containing value. If the list contains multiple nodes with the value,
then remove will only remove the first occurrence of such a node in the
list. The remove method for your OrderedList class should remove
ALL nodes containing value in the list.

2. The insert method from the List class places nodes at the head of the
list, like a stack. The insert method for your OrderedList class
should insert new nodes in order, e.g. if 5 is entered and the list currently
contains 1 6 7, then the new list order should be 1 5 6 7.

b) Write your declaration of the OrderedList class below.

class OrderedList: public List {
public:

OrderedList();
virtual bool remove(int value);
virtual void insert(int value);
~OrderedList();

};

CSE 143 Summer 2001 Final Exam page 12 of 12

c) Code your implementation of OrderedList::remove below. (Hint: you
might find it useful to use the find method and remove method from the List
class in your implementation.)

bool OrderedList::remove(int value) {
bool temp_return = find(value);
while (find(value))

List::remove(value);
return temp_return;

}

d) Code your implementation of OrderedList::insert below.

void OrderedList::insert(int value) {

// if list is empty or if value is smallest element of
// list, then add new node to the front of the list
if (isEmpty() || (head->m_value > value)) {

List::insert(value);
}
else { // otherwise, find where to insert new node

ListNode * tempNode = new ListNode;
tempNode->m_value = value;
ListNode * prev = head;
ListNode * curr = head->next;
while (curr != NULL) {

if (curr->m_value >= value) {
prev->next = tempNode;
tempNode->next = curr;
return;

}
prev = curr;
curr = curr->next;

}
prev->next = tempNode;
tempNode->next = curr;

}
}

