
CSE 143 U

U-13/25/2001

CSE 143

Program Efficiency

[Chapter 9, pp. 390-401]

U-23/25/2001

What is Efficiency?
•Efficiency == effective use of resources
•What is a "resource"?
•Time

•Space or memory

•Programmer
•Network bandwidth

•Others?

•We’ll focus on time, but all of these can be
analyzed. (Even programmers?)

U-33/25/2001

Does Efficiency Matter?
•Yes! Faster is better
•Assuming correctness, etc.

•How can we achieve faster code?

U-43/25/2001

How to Speed Up Code
•Wait for the machines to get faster

•Write “tighter” code. (Gross hacks?)

•Use “better” algorithms and data structures.
(These two really go together, as we’ll see.)

U-53/25/2001

Objective

•To convince you that the most important way to
speed up a program through “better” algorithms.

•To give you some tools by which you can figure
out what a better algorithm is.

U-63/25/2001

Faster Machines
•Moore’s law states that computers double in
speed every 18 months.
•This has held fairly true for decades

•Why not just wait for computers to get faster?
•When might this work?

•When might this not work?

CSE 143 U

U-73/25/2001

Fast Code
•C/C++ language/culture encourages tricky coding,
often in the name of "efficiency"

while (*q++ = *p++) ;

•Reasons for caution
•Correctness?

•Code used by others
•No need to do compiler's job

•90/10 principle

U-83/25/2001

Measuring Time Efficiency
•One way of measuring speed is to run the
program
•see how long it takes
•see how much memory it uses

•Lots of variability when running the program
•What input data?

•What hardware platform?

•What compiler? What compiler options?

•Just because one program runs faster than
another right now, will it always be faster?

U-93/25/2001

Complexity Analysis
•Lots of little details that we’ll avoid, to achieve
platform-independence

•Use an abstract machine that uses steps of
time and units of memory, instead of seconds
or bytes
•Each elementary operation takes 1 step
•Each elementary instance occupies 1 unit of
memory

•Will this still make any sense?

U-103/25/2001

Complexity Analysis (2)
•Measure time and space in terms of the size of
the input rather than details of the specific input
•Our results will not give us absolute run times
•We will get functions that describe how the program will
slow down as the problem size grows

•Allows us to focus on big issues, and fundamental
differences between algorithms
•Don’t panic—we’ll see some examples!

U-113/25/2001

Example For Analysis
// Input: int A[N], array of N integers

// Output: Sum of all numbers in array A

int Sum(int A[], int N) {

int sum = 0;
for (int j = 0; j < N; j++)

sum = sum + A[j];

return sum;
}

How should we analyze this?

U-123/25/2001

Analysis of Sum
•First, describe the size of the input in terms of one
or more parameters
• Input to Sum is an array of N ints, so size is N.

•Then, count how many steps are used for an input
of that size
•A step is an elementary operation such as + or < or
A[j]

CSE 143 U

U-133/25/2001

Analysis of Sum (2)
int Sum(int A[], int N) {
int sum = 0;

for (int j = 0; j < N; j++)

sum = sum + A[j];

return sum;
}

• 1, 2, 8: Once
• 3, 4, 5, 6, 7: Once per each iteration of for-loop

– N iterations

• Total is 5N + 3 operations

• We can view this as a function of N, the complexity
function of the algorithm: f(N) = 5N + 3.

1

2 3 4

5

6
7

8

U-143/25/2001

How 5N+3 Grows
•The 5N+3 analysis gives an estimate of the
true running time for different values of N:
N = 10 => 53 steps
N = 100 => 503 steps
N = 1,000 => 5,003 steps
N = 1,000,000 => 5,000,003 steps

•As N grows, the number of steps grows in
linear proportion to N, for this Sum function

U-153/25/2001

Methodology
•The example was typical
•1. Analyze a program by counting steps
•2. Derive a formula, based in some parameter N
that is the size of the problem
•For example, one algorithm might have a formula of N2

•Another might be 2N

•3. Study the formula to understand the overall
efficiency

U-163/25/2001

Why is this Useful?

What happens when we double the input size N?

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

U-173/25/2001

Isn't This Totally Bogus?
•Need to run faster? Buy a faster computer!
•Recall Moore’s law

•Suppose we could make the CPU 1,000,000
times faster -- how much would that help?
•Suppose the algorithm has complexity 2N?

•See following chart

U-183/25/2001

If We Sped Up the CPU...

Even speeding up by a factor of a million, 103010
is only reduced to 103004

N log2N 5N N log2N N2 2N

===

8 3 40 24 64 256

16 4 80 64 256 65536

32 5 160 160 1024 ~109

64 6 320 384 4096 ~1019

128 7 640 896 16384 ~1038

256 8 1280 2048 65536 ~1076

10000 13 50000 105 108 ~103010

CSE 143 U

U-193/25/2001

How long is a Computer-Day?
If my program needs f(N) microseconds to solve some

problem, how big a problem can I solve in a day?

What if I get a million times faster computer ?

f(N) N for 1 day million x, N for 1 day

N N = 9 x 1010 million times larger

5N N = 2 x 1010 million times larger

N log2N N = 3 x 109 60,000 times larger

N2 N = 3 x 105 1,000 times larger

N3 N = 4 x 103 100 times larger

2N N = 36 +20 larger

U-203/25/2001

Big numbers
•Suppose a program has run time proportional to
n!
•Suppose the run time for n = 10 is 1 second
•Do the math:
•For n = 12, the run time is 2+ minutes
The time for 12 is 12! = 10! x 11 x 12 which is 132
times longer that 1 second: 132 seconds

•For n = 14, the run time is 6 hours
11 x 12 x 13 x 14 times longer

•For n = 16, the run time is 2 months

•For n = 18, the run time is 50 years
•For n = 20, the run time is 200 centuries

U-213/25/2001

What Matters in the Long Run?

•What about the 5 in 5N+3? What about the +3?
•As N gets large, the +3 becomes insignificant

•The 5 is inaccurate:
<, [], +, =, ++ require varying amounts of time;

different computers by and large differ by a
constant factor

•What is fundamental is that the time is linear in N
•We say "5N+3 grows like N", or "5N+3 is asymptotically
linear" or "5N+3 is asymptotically bounded by N", etc.

U-223/25/2001

Asymptotic Complexity
•Asymptotic: what happens as N gets large
•Focus on the highest-order term

–Drop lower order terms such as +3

•Drop the constant coefficient of the highest order term

•This gives us an approximation of the complexity
of the algorithm
• Ignores lots of details, concentrates on the bigger picture

U-233/25/2001

Comparing Algorithms
•We can now (partially) answer the question,
“Given algorithms A and B, which is more
efficient?”
•Same as asking "Which algorithm has the smaller
asymptotic time bound?"

•For specific values of N, we might get different
(and uninformative) answers
•Instead, compare the growth rates for arbitrarily
large values of N (the asymptotic case)

U-243/25/2001

Comparing Functions

Definition: If f(N) and g(N) are two
complexity functions, we say

f(N) = O(g(N))

(read “f(N) is order g(N)”, or “f(N) is big-O of g(N)”)

if there is a constant c such that
f(N) < c g(N)

for all sufficiently large N.

CSE 143 U

U-253/25/2001

Big-O Notation
•Think of f(N) = O(g(N)) as

“ f(N) grows at most like g(N) ” or
"f grows no faster than g"
(ignoring constant factors, and for large N)

•Big-O is not a function!
•Never read = as "equals"!
•Examples:
•5N + 3 = O(N)
also true: 5N + 3 = O(N2)

•37N5 + 7N2 - 2N +1 = O(N5) U-263/25/2001

Computer Science Footnote
•There's a whole big theory of algorithmic
complexity
•Typical questions:
•What is the worst case performance (upper bound) of a
particular algorithm?

•What is the average case performance of a particular
algorithm?

•What is the best possible performance (lower bound) for
a particular type of problem?

•Many difficult questions
•Complicated mathematics

•Still many unsolved problems!

U-273/25/2001

"Computer Science is no more about computers
than astronomy is about telescopes."

-- E. W. Dijkstra

U-283/25/2001

Common Orders of Growth
Let N be the input size

O(k) = O(1) Constant Time
O(logbN) = O(log N) Logarithmic Time
O(N) Linear Time
O(N log N)
O(N2) Quadratic Time
O(N3) Cubic Time
...
O(kN) Exponential Time

Nanyinteger is called "polynomial" time
Rule of thumb: if it ain't polynomial, it ain't practical

Increasing
C

om
plexity

U-293/25/2001

Why is this Useful? (2)
•As inputs get larger, any algorithm of a smaller
order will be more efficient than an algorithm of a
larger order

Input Size

T
i
m
e

(
s
t
e
p
s
)

3N = O(N)

0.05 N2 = O(N2)

N=60

U-303/25/2001

Big-O Arithmetic: Simplified

•Remember common functions in order
from smallest to largest:
1, log(N), N, Nlog(N), N2, N3,...,
2N,3N,...

•Ignore constant multipliers
300 N + 5N4 + 6 • 2N = O(N + N4 + 2N)

•Ignore everything except the highest order
term
N + N4 + 2N = O(2N)

CSE 143 U

U-313/25/2001

Constant Time Statements

Simplest case: O(1) time statements
•Assignment statements of simple data types
int x = y;

•Arithmetic operations
x = 5 * y + 4 * z;

•Array referencing
A[j]

•Referencing/dereferencing pointers
Cursor = Head -> Next;

•Declarations of simple data types
int x, y=3;

•Most conditional tests
if (x < 12) ...

U-323/25/2001

Constant Time Statements (2)

Watch out for things that look like simple O(1)

time operations, but are actually more complex:
• Overloaded operators

LinkedList L1 (L2); // deep copy?

myList s1 = s2 + s3; // overloaded + ??

• Declaring complex data types that have
constructors

• Function invocations
if (aPriorityQueue.Size() < 10) ...

U-333/25/2001

Analyzing Loops

Any loop analysis has two parts:
1. How many iterations are performed?
2. How many steps per iteration?

int sum = 0;

for (int j = 0; j < N; j++)

sum = sum + j ;

• Loop executes N times (0 .. N-1)

• 4 = O(1) steps per iteration

• Total time is N · O(1) = O(N · 1) = O(N)

U-343/25/2001

Analyzing Loops (2)

•What about this for-loop?
int sum = 0;

for (int j = 0; j < 100; j++)

sum = sum + j;

•Loop executes 100 times (0 .. 99)
•4 = O(1) steps per iteration
•Total time is 100 · O(1) = O(100 · 1) =
O(100) = O(1)

•That this loop is faster makes sense when N
>> 100.

U-353/25/2001

Analyzing Loops (3)
What about while-loops?
•Determine how many times the loop will be executed

bool done = false;
int result = 1, n;
cin >> n;
while (!done) {
result = result * n;
n--;
if (n <= 1) done = true;

}

•Loop terminates when done == true, which
happens after n iterations

•O(1) time per iteration

•O(n) total time

U-363/25/2001

Nested Loops –Easy Case
•Treat just like a single loop, and evaluate each level of

nesting as needed:
int j, k, sum = 0;
for (j = 0; j < N; j++)
for (k = N; k > 0; k--)

sum += k + j;

•Start with outer loop:
•How many iterations? N
•How much time per iteration? Need to evaluate inner loop …

•Inner loop uses O(N) time
• and this does not depend on the outer loop time

•Total is N · O(N) = O(N · N) = O(N2)

CSE 143 U

U-373/25/2001

Nested Loops – Harder Case

•What if the number of iterations of one loop depends
on the counter of the other?

int j, k, sum = 0;
for (j = 0; j < N; j++)
for (k = 0; k < j; k++)
sum += k * j;

•Analyze inner and outer loops together
•For this example, number of iterations of the inner loop

is
0 + 1 + 2 + … + (N-1) = O(N2)

• Time per iteration is O(1), for total O(N2)

•In general, finding a formula can be hard

U-383/25/2001

Sequences of Statements

For a sequence of statements, compute their cost
functions individually and add them up

for (int j = 0; j < N; j++)

for (int k = 0; k < j; k++)

sum = sum + j*k;

for (int l = 0; l < N; l++)

sum = sum - l;

cout << “Sum is now “ << sum << endl;

Total cost is O(N2) + O(N) + O(1) = O(N2)

O(N2)

O(N)

O(1)

U-393/25/2001

Conditional Statements
•What about a conditional statement such as
if (condition)

statement1;

else

statement2;

where statement1 runs in O(n) time and
statement2 runs in O(n2) time?

•We use “worst-case complexity”: among all inputs
of size n, what is the maximum running time?
•The analysis for the example above is O(n2).

U-403/25/2001

"Worst-Case" vs "Average-Case"
if (condition)

statement1;

else

statement2;

•If you knew how often the condition is true, you could
compute a weighted average.
• Extreme case: the conditional might be always true or never

true

•"Average case" analysis can be very difficult
•Use tools from probability and statistics

•For many algorithms, it is useful to know both the
worst case and the average case complexity

U-413/25/2001

Cost of Function Calls
F (b, c);
•Cost =

cost of making the call

+ cost of passing the arguments

+ cost of executing the function

•Making and returning from the call: O(1)
•Passing the arguments: depends on how they are
passed
•Cost of execution: must do analysis of the
function itself

U-423/25/2001

Efficiency in Parameter Passing

•Pass by value -- copies entire structure
•Page::Translate(CodeBook cb);
•What if there's a copy constructor?

•Pass by reference -- does not copy, but allows
updates
•Page::Translate(CodeBook& cb);
•Page::Translate(CodeBook * cb);

•const reference -- pass by reference, but do not
allow changes
•Page::Translate(const CodeBook& cb);

•Which technique should you use??

CSE 143 U

U-433/25/2001

Recursive Algorithms
•We need to know two things:
• number of recursive calls
• the work done at each level of recursion

•Example: exponentiation
int exp (int x, int n) {

if (n==0)

return 1;

else

return x * exp(x,n-1);

}

• The running time is O(n):
n recursive calls until base case is reached, and the work
done at each call is O(1)

•In general, a "recurrence relation" results from the
analysis, solvable with tools from math.

O(1)

U-443/25/2001

Recursive Algorithms (2)
•Fibonacci numbers:

int fib (int n) {

if (n == 1 || n == 2)

return 1;

else

return fib(n-1) + fib(n-2);

}

•How many calls? How much work at each call?
•Recurrence relation: T(n) = T(n-1)+T(n-2)+O(1)
•Running time? Solve the equation

U-453/25/2001

List Implementations
N is the list size

array linked list doubly
linked list

constructor
isEmpty
isFull
reset
advance
endOfList
data

size
insertBefore
insertAfter
deleteItem

U-463/25/2001

List Implementations
N is the list size

array linked list doubly
linked list

constructor O(1) O(1) O(1)
isEmpty O(1) O(1) O(1)
isFull O(1) O(1) O(1)
reset O(1) O(1) O(1)
advance O(1) O(1) O(1)
endOfList O(1) O(1) O(1)
data O(1) O(1) O(1)

size O(1) O(N) O(N)
insertBefore O(N) O(N) O(1)
insertAfter O(N) O(1) O(1)
deleteItem O(N) O(N) O(1)

U-473/25/2001

Dynamic arrays
•When array is full, reallocate new array
• strategy 1: increase size by one

if (size == maxSize){

int *tmp = new int[maxSize + 1];
…

}

• strategy 2: double array size
if (size == maxSize){

int *tmp = new int[2*maxSize];
…

}

•What is the cost of
Vector a;

for (int i = 0; i < N; i++)

a.insert(i, i);

U-483/25/2001

Dynamic Array Analysis
•Count the sizes of the arrays allocated

•Increment by one:
•1 + 2 + 3 + 4 + . . . + n = O(N2)

•Double size (assume n is a power of 2)
•1 + 2 + 4 + 8 + 16 + . . . + n/4 + n/2 + n = 2N - 1 = O(N)

CSE 143 U

U-493/25/2001

Printing a list in reverse order
•Iterative

L.GoToEndOfList();

while (! L.StartOfList()){

L.Previous();

cout << L.Data();

}

•O(N2) since Previous is O(N)

•Recursive
void List::RevPrint(){

if (EndOfList()) return;

int d = Data(); Advance();

RevPrint(); cout << d;

}

•O(N), N recursive calls at O(1) each
U-503/25/2001

Stack implementation
•Measure cost of inserting N elements
•Array implementation
• Insert at bottom (dumb) vs. insert at top

• Insert at bottom: O(N) to insert element since everything
is copied
• Insert at top is O(1) per operation

3

5

4

4

5

3

U-513/25/2001

Review: Common Orders of Growth

Memorize!

O(k) = O(1) Constant Time
O(logbN) = O(log N) Logarithmic Time
O(N) Linear Time
O(N log N)
O(N2) Quadratic Time
O(N3) Cubic Time
...
O(kN) Exponential Time

Nanyinteger is called "polynomial" time
Rule of thumb: if it ain't polynomial, it ain't practical

Increasing
C

om
plexity

U-523/25/2001

Summary So Far
•Measuring Efficiency
•Measure as a function of input size N
•Use steps of time or units of memory for
measurements

•Asymptotic complexity
•Growth rate as N gets large

•Order of common complexity functions
•Big-O notation
•Methods for analyzing programs
•Complexity of list, stack, etc.
implementations

U-533/25/2001

0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000

N

T
im

e
(s

ec
)

Do Constants Matter?
Two O(n2) Sorting Algorithms

Insertion
Sort
T ≈ 16 n2

nanosecs

Bubble Sort
T ≈ 55 n2

nanosecs

Benchmark run on 233Mhz P II, 96M, NT 4.0, VC 6.0, 5/30/00 U-543/25/2001

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0 100 200 300 400 500 600

N

Ti
m

e
(s

ec
)

Bubble
Sort
(55 n2)

Insertion
Sort
(16 n2) Library

Quicksort
(500 n log n)

Optimized
Quicksort
(110 n log n)

O(n log n) vs O(n2): closeup

CSE 143 U

U-553/25/2001

Summary
•FIRST pick the right algorithm
•Big-O helps do that

•Can give many orders of magnitude improvement

•THEN optimize it
• above 2x improvement is uncommon

Premature optimization is the
root of all evil -- D. Knuth

