
CSE 143 N

N-13/25/2001

CSE 143

Dynamic Memory In Classes
[Chapter 4, p 156-157]

N-23/25/2001

Class Vector: Interface
class Vector {
public:

Vector ();

bool isEmpty();

int length ();
void vectorInsert (int newPosition, Item newItem);

Item vectorDelete (int position);

Item vectorRetrieve (int position);

...

}

N-33/25/2001

Many Ways to Implement
•Version 1: With Fixed length arrays
•Very efficient to access individual elements

•Limited in size, flexibility

•Version 2: With a linked list (later)
•Very flexible in size
• Inefficient to access individual elements
Have to chase pointers down the list

•Here's a third way:
•Use an array (for efficient access)

•Make the array itself "dynamic"
Able to grow as needed

N-43/25/2001

Vector Implementation
class Vector {

public:

// constructors and other methods, as before

private:

Item *Items; // items[0..capacity] is space allocated for
// this vector

int size; // items are stored in Items[0..size-1]

int capacity; //current maximum array size

// might need additional private helper functions

};

N-53/25/2001

Draw the picture!

N-63/25/2001

Vector Constructor
Vector::Vector() {

// set up private variables

capacity = DEFAULT_CAPACITY;

size = 0;

// allocate memory

items = new Item[capacity];

// what goes here?

}

Except for this, the public methods can be the same as for
the fixed array implementation.

Exception: insert needs to insure there is room to add a new
item.

CSE 143 N

N-73/25/2001

Useful Private Functions
class Vector {

public:

// constructors and other methods

private:
// data members here...

// ensure the Vector can hold at least n elements

void ensureCapacity(int n);

// set size of the Vector to n elements

void growArray(int n);

};

N-83/25/2001

ensureCapacity()
// ensure that Vector can hold at least n
// elements
void Vector::ensureCapacity(int n) {

// return if existing capacity is ok
if (capacity >= n)

return;

// out of space: double capacity
int newCapacity = capacity * 2;
if (newCapacity < n)

newCapacity = n;

// grow the array
growArray(newCapacity);

}

N-93/25/2001

growArray()
// Set size of vector to newCapicity

void Vector::growArray(int newCapacity) {

Item *newItems = new Item[newCapacity];

assert(newItems != NULL);

for (int i = 0; i < size; ++i)

newItems[i] = items[i];

...

items = newItems;

capacity = newCapacity;

}

Have we forgotten anything? N-103/25/2001

Now insert is easy!
// insert newItem at newPosition in Vector

void Vector::vectorInsert(int newPosition,

Item newItem) {

// make room

ensureCapacity(size+1);

// shift data over

for (int i=size; i > newPosition; --i)

items[i] = items[i-1];

// store the item

size++;

items[newPosition] = newItem;

}

N-113/25/2001

Issues with Dynamic Memory

•Using dynamic memory in classes raises issues
•Familiar dangers:
•Dangling pointers, Uninitialized pointers, Memory leaks,
etc.

•Some new complications
•Many of them arise when objects are copied
Copied automatically when passed as params, etc.

Copied explicitly by programmer

•Other dangers when objects are deleted
Explictly deleted, or just go out of scope

•C++ has some special features to help the situation

N-123/25/2001

Innocence Destroyed (I)
// assume Item == int

Vector v1, v2;
v1.vectorInsert(0, 30);
v1.vectorInsert(1, 4);
v2 = v1;
v2.vectorDelete(0);

•//Draw the picture and weep!

CSE 143 N

N-133/25/2001

After v2=v1, Before v2.vectorDelete

items
size 2

30items

size 2

v1

v2

How does v2.vectorDelete
change the picture?

4

capacity 5

capacity 5

N-143/25/2001

Innocence Destroyed (II)
void add42 (Vector v) { //add 42 to front of vector

v.vectorInsert(0, 42); }

//code in main
Vector v1;
v1.vectorInsert(0, 0);
add42(v1);
•v1 passed by value, so no harm done -- right??
•Draw the picture and weep!

N-153/25/2001

After v1.insert(0,0)

v1

v
call add42:

in main:

items

size 1
capacity 5

items
size 1
capacity 5

0

N-163/25/2001

After v.insert(0, 42);...

back in main...

v
in add42:

items

size 2
capacity 5

42 0

v1
items

size 1
capacity 5

N-173/25/2001

Innocence Destroyed (III)
void MyFunction () {

Vector tempVector; //local variable

// build a temporary vector for whatever reason

...
}

•When a function exits
• local variables are automatically destroyed

•so having a local Vector is no problem -- right?

•Draw the picture and weep!

N-183/25/2001

now back in main...

Local variable goes away...
tempVector (in MyFunction)

items

size 4
capacity 5

0 42 -3 4

0 42 -3 4

CSE 143 N

N-193/25/2001

The Culprit: "Shallow Copy"
•For structs and classes, all and only the
member variables are copied
•When there's dynamic memory, that's not
enough
•Example: the items pointer value is copied, so the
copy points to the same place

•Can lead to surprises and bugs

•Solution: need a concept of "deep copy"

N-203/25/2001

More copy problems
•The problem with deep vs. shallow copying can
also appear in these contexts:
• Initialization in a variable declaration:
SomeClass f1;

SomeClass f2 = f1;

•Passing a copy of an actual to a formal parameter (pass-
by-value)

•Returning an instance as the value of a function:
return someIntVector;

Why? because a function returns a new, temporary object

•By default, C++ performs such initializations using
shallow copy semantics.

N-213/25/2001

Needed: Deep Copy
•A "deep copy" should make a complete new copy,
including new dynamic memory
•A way to make the deep copy happen
automatically when appropriate
•Vector v1 = v2;
•v1 = v2;
• func1(v1);
•return v1;

•PS: this won't solve the problem of cleaning up
dynamic memory used by local variables
•We'll get back to that

N-223/25/2001

"Deep copy"
•A deep copy makes a completely independent
copy, by allocating more dynamic memory

(deep) copy

original

items

size 4
capacity 5

0 42 -3 4

items

size 4
capacity 5

0 42 -3 4

N-233/25/2001

Deep copy for Vector

•Initialize the new vector to empty.
•For each element in the vector
•add it to the new vector

•Could be a client function
•void copyVector (Vector &orig, Vector &newVec);

•use member functions like length, retrieve, insert, etc.

•Could be a public or private member function
•void Vector::copy (Vector &orig);

•copies from orig to current vector

•use private data directly

N-243/25/2001

Making It Automatic
•Problem with copyVector: must be called explicitly
•We need it to happen automatically in certain
cases
•Solution: C++ allows a "Copy Constructor"
•Will be called automatically in certain cases where an
object must be initialized from an existing object

•Compiler recognizes it as a constructor with a
particular parameter list:
•classname (classname &)
•or classname (const classname &)

CSE 143 N

N-253/25/2001

Copy Constructor for listClass
class Vector {
public:

Vector ();
Vector(Vector &);

...
}
•Compiler recognizes this as a copy constructor
•Will call automatically when
•passing arguments by value
• initializing variable with = in a variable declaration
•copying a return value

N-263/25/2001

Inside the Copy Constructor
•It's just a function, it can do anything!
•But... what you normally write is a deep copy
•For our Vector copy constructor:
•could call a previously defined copyVector function

•could build the new copy directly

•If you don't define your own copy constructor, the
compiler generates a default copy constructor
•Does a shallow copy

N-273/25/2001

Look at the code:
Vector::Vector(Vector &other) { copy(other); }

// private member function: replace this Vector

// with a deep copy of other

void Vector::copy(Vector &other) {

// set up private variables

capacity = other.capacity;

size = other.size;

// allocate memory

items = new Item[capacity];

assert(items != NULL);

// copy data

for (int i = 0; i < size; ++i)

items[i] = other.items[i];

}
N-283/25/2001

Technicalities of '='
Vector MyVector = YourVector;
is NOT THE SAME AS
Vector MyVector;
MyVector = YourVector;
•The difference in technical terms:
• in the first case, the object is being created
• in the second case, the object already exists

•To handle the latter case, we have to define an
"overloaded assignment operator"
•Syntax: Vector & Vector::operator = (Vector &other);
• The code for this function could (should) perform a deep copy.

N-293/25/2001

Detour: this
•A reserved word in C++
•Means “a pointer to the current object”
•Like a hidden parameter to member functions
• int Vector::length(Vector *thisVector *thisVector *this) { ... }
•only exists in member functions!

•Can use like any other pointer
•Vector *vp = this;
• if (vp == this) ...
•return this->size;
• this->capacity = this->capacity * 2;
• this->length()

N-303/25/2001

Overloaded operator =
Four important steps:
1. Test for same object:
•if (&other != this) { /* copy code */ }

2. Delete old dynamically allocated data
•call cleanup() function is you have one, or

•directly: delete [] items;

3. Copy new data
•copy()if you have one

4. Return a reference to the current object:
•return *this;

CSE 143 N

N-313/25/2001

And the code...
Vector & Vector::operator=(Vector &other) {

if (&other != this) {

cleanup();

copy(other);

}

return *this;

}

// private member function

void Vector::cleanup() {

delete [] items;

}

N-323/25/2001

Next Problem: Cleanup
•When a local goes away, only the local memory is
released
•Dynamic memory stays allocated
•results in a memory leak
unless there is another pointer to the data

•One solution: write a function to delete the
allocated dynamic memory
•cleanup() function we used in operator =
•For Vector, this would be simply delete [] items;

•Drawback: you (or client) must remember to call the
function

N-333/25/2001

C++ Solution: A "Destructor"
•Called automatically to de-construct the object
•When it goes out of scope (e.g. end of function)
•When delete operator used

•Can contain most any code
•Normally it would contain code to release all dynamically
allocated memory

•Special syntax identifies it:
~classname ()
•no return value
•no arguments allowed

•The compiler-generated default destructor does
nothing.

N-343/25/2001

Vector Destructor
Vector::~Vector()

{

cleanup();

}

N-353/25/2001

Wise Advice
•When defining a class which uses dynamic
memory, ALWAYS provide
•a default constructor
•a deep copy method (probably private)
•a copy constructor (calls the deep copy method)
•an overloaded assignment operator (calls the deep
copy)
•a destructor

•It may seem like unnecessary work, but will save
you (and your readers and clients) from nasty
surprises.

N-363/25/2001

Constructor Puzzle
•Assume the class Vector has all of the following defined:

DC: default constructor; CC: copy constructor; op =:
overloaded assignment operator; D: destructor
•On each line, say if DC, CC, op =, or D is called.
Vector puzzlfunction (Vector & v1) { //line 1

Vector v2; //line 2
Vector v3 = v1; //line 3
v2 = v1; //line 4
v2.vectorInsert(1, 0); //line 5
Vector * v4; //line 6
v4 = new Vector; //line 7
delete v4; //line 8
printVector(v2); //line 9
return (v2); //line 10 (tricky)

} // line 11

CSE 143 N

N-373/25/2001

More Wrinkles
•Classes within classes, i.e., member variables
which are themselves classes
•Have to know what order the constructors are called in
Answer: bottom up

•Have to know what order destructors are called in
Answer: top down

•Special syntax for calling non-default constructors of
member variables within outer-level constructors
"member initializer list" in implementation

trivial examples p.172, 173

•Nothing is ever as simple as it seems in C++!

N-383/25/2001

Where We're Headed
•We know the C++ features for dynamic memory
•We know how to package ADTs that use dynamic
memory
•Armed with this... we can begin to investigate a
series of interesting and useful data structures
and ADTs. For each one:
•What the ADT is (abstractly)

•How to implement (often more than one way)

•Applications

