
CSE 143 L

L-13/25/2001

CSE 143

Pointer-Based Linked Lists
[Chapter 4 p.157]

L-23/25/2001

Linked Lists

•A linked list is a collection of “nodes” containing
data
•Each node points to the next node in the list.
•That's it!
•Example: a list of 3 integers:

4 88 16

L-33/25/2001

Metacomment
•Linked lists -- a Great Idea In Programming
•Simple, natural
•Flexible
Many variations are possible, once basic idea is
mastered

•Linked lists are commonly implemented
with dynamically allocated nodes
•But after all, this is C++.
•So expect complications!

L-43/25/2001

Implementing Linked Lists

•Each node has two members: a data item and a
next link field which points to the successor node.
•The "next link" field of one node points to the next
node in the list.
•Use a “head” or “front” variable to point to first
node
•Example: a list of 3 integers:

4 8 16head

L-53/25/2001

What’s the “data item”?
•Data is the same in every node of the list
•Just like with arrays

•Could be ANY type: integer, double, Book,
Bookshelf, Appointment, BankAccount, etc.

•Most of our examples use int for simplicity

L-63/25/2001

Nodes for an int Linked List
•First we’ll declare a struct which we’ll use to
represent a node:

struct Node {

int item;

Node* next;

};

•Now we can create new nodes:
Node* p;

p = new Node;

p->item = 100; // shorthand for: (*p).item = 100

p->next = NULL; // shorthand for: (*p).next = NULL

•Note the use of the -> operator

•Draw the picture!

CSE 143 L

L-73/25/2001

Manipulating Nodes
•Draw the picture that results from the following
code:

Node* front;

Node* temp;

front = new Node;

front->item = 1;

front->next = new Node;

front->next->item = 2;

front->next->next = NULL; // what did we just do?

temp = front; front = front->next;

delete temp; // what did we just do?

L-83/25/2001

Inserting a new link

4 8 16head

Before:

Insert "5" after 4.

After:

L-93/25/2001

Deleting a link

4 8 16head

Before:

Delete "8"

After:

L-103/25/2001

Tips for Getting the Code Right

•Draw pictures
•These special cases often need slightly different
code
•Middle of the list
•Beginning of the list
•End of the list
•Empty list

•Helper variables such prev, curr
•make sure they have the right values!

•Careful as usual with dynamic memory
•Fail-safe programming: asserts, etc.

L-113/25/2001

Printing a Linked List
// print data in list given pointer to first node

void print(Node* first) {

Node *p; // *p is the current node in the list

p = __________ ;

while (___________________) {

}

}

L-123/25/2001

Recursion and Linked Lists
•A linked list is a recursive data structure
•Recursive algorithms are natural with linked lists
•But not always as efficient

•Good recursion practice!

CSE 143 L

L-133/25/2001

Printing a Linked List
// print data in list given pointer to first node

void print(Node* first) {

if (first == NULL)

return;

else {

cout << endl << first->item;

print(first->next);

}

}

•How many recursive calls are needed?

L-143/25/2001

Printing in Reverse Order
•At first, seems difficult
All the pointers point only forward.

•Recursion to the rescue!

void RPrint(Node* first) {

if (first == NULL)

return;

else {

RPrint(first->next);

cout << endl << first->item;

}

}

•Challenge: Try doing this without recursion

L-153/25/2001

Summing a List

int listSum(Node* list) {

if (list == NULL)

return 0; // empty list has sum == 0

else

return list->item + listSum(list->next);

}

•Common pattern for a list "traversal"
•How would you modify this to...
•Count the length of a list?
•Add N to each element of a list?

•Determine if a particular value occurred in the list?

L-163/25/2001

Puzzler: List Remove
•Make new list (copy), same data as old, except:
don't include nodes with a given data value in the
new list
•The original list is to be unchanged!

Node* ListRemove(Node *first, int v);

•Draw a picture of an example first!
• If you can't draw the picture, how can you hope to
program it?

L-173/25/2001

Node* ListRemove(Node *first, int v)

{

if (first == NULL)

return NULL;

else if (first->item != v){

//make a node for the new list, copy data

Node* newNode = new Node;

newNode->item = first->item;

newNode->next = ListRemove(first->next, v);

return newNode;

}

else

return ListRemove(first->next, v);

}

L-183/25/2001

Another Approach
•Some people use a slightly different approach to
implementation
•1. Have a permanent, dummy node as the header
•2. Point the last link of the chain back to the dummy
(header) node

•All the code changes!
•On balance, may be a little simpler; fewer special cases
when inserting and deleting

