
CSE 143 J

J-13/25/2001

CSE 143

Dynamic Memory

[Chapter 4, pp. 148-157, 172-177]

J-23/25/2001

What's wrong with the way things are?

•One problem: All of our data structures so far
have a “maximum” size.
•E.g. arrays declared with fixed size

•This size is fixed at compile time.
•Sometimes this is acceptable, sometimes not
•Allocate too little: application may not run

•Allocate too much: wasted memory (may run out)

•Many real applications need to grow and shrink
the amount of memory consumed by an object at
run time.

J-33/25/2001

A "Shape" Problem

•All of our data structures so far are fixed in form
and shape
• Individual vars, structs, classes, or arrays of them, or
simple nesting

•Many problems require more creative shapes
•Family tree

•Company database

•Recursive data, complex links

•Needed variety
• for modeling the data

• for efficiency
J-43/25/2001

Solution: "Dynamic" Memory

•1. Allow some of the memory to be allocated as
needed
•2. Allow pieces of memory (variables) to be linked
in arbitrarily complex ways
•Most languages provide some form of dynamic
memory.
•C++ provides an interface to dynamic memory via
two new operators: new and delete.
•The dynamic memory is accessed through pointers.

J-53/25/2001

Plan of Study
•First
•Review pointers and reference parameters

•Next
• Introduce C++ new and delete operators
•Dangers!
•Dynamic memory in classes
•Pointers vs. arrays
•Dynamic linked lists

•Finally...
•Even more about dynamic memory in classes
•Vector class revisited

J-63/25/2001

Data and Memory
•Objects of different types use differing amounts of
memory
•Built-in types: implementation dependent
•PC (typical):

char: 1 byte (8 bits)
"wide" chars: 2 bytes (for international UNICODE)

int: typically 4 bytes
• 2 bytes on older systems
• up to 8 bytes on newest "64-bit" computers

double: 8 bytes on many systems

•Programmer defined types (such as classes)
•depends on size of data members
•could be few bytes or thousands of bytes

CSE 143 J

J-73/25/2001

Ways of Using Memory
•Static - allocated at program startup time, exists
throughout the execution of the entire program
•Best-known example: global variables

•Automatic - implicitly allocated upon function
entry, deallocated on exit

void foo (char x) {

int temp;

. . .

// x and temp are deallocated here

}

•Dynamic - explicitly allocated and deallocated by
the programmer

J-83/25/2001

Pointer Variables
•By "address of an object" we mean the address of
the first memory cell used by the object
•A pointer variable is one that contains the address
of another data object as its value.
•To declare a pointer variable or param:

Type* name;

•Example:

int* intPtr;

char* charPtr;

BigNat* bigNatPtr;

J-93/25/2001

Review: Swap in C
•In CSE 142, you used pointers to write functions
which modified their actual parameters:

void swap(int* p, int* q) {

int temp;

temp = *p;

*p = *q;

*q = temp;

}

// example call:

swap(&intOne, &intTwo); // don’t forget the &

J-103/25/2001

Two Important Operators
•The address-of operator &:

int x = 45;

int* p = &x;

•The dereference operator *:
*p = 30;

p = 72; // what’s the problem here?

Note: The & symbol used with reference
parameters is the same keyboard character, but it
means something quite different in that context

J-113/25/2001

Review: Swap in C++
•C++ lets us use reference parameters, leading to
cleaner code:

void swap(int& a, int& b) {

int temp = a;

a = b;

b = temp;

}

// example call:

swap(intOne, intTwo); // note: no &

J-123/25/2001

Reference Types
•Main use: for parameters

•We can also declare variables of reference types:
Type& rname //rname will hold an alias to something

//of type Type

•Example:
int x;

int& refx = x; // a ref. variable must be initialized

x = 40;

cout << refx; // what’s the output?

refx = 20;

cout << x; // what’s the output?

•In 143 we will avoid stand-alone reference variables
• but reference params are used as needed.

CSE 143 J

J-133/25/2001

Pointers and Types
•Pointers to different types themselves are
different types
double *dpt;

BankAccount * bp;

•C/C++ considers dpt and bp to have different
types
•even though under the hood they are both just memory
addresses

•Types have to match in many contexts
•e.g. actual param types matching formal param types

•pointers are no exceptions
J-143/25/2001

C++ Is "Strongly Typed"

int i; int * ip;

double x; double * xp;

...

x = i; /* no problem */

i = x; /* not recommended */

ip = 30; /* No way */

ip = i; /* Nope */

ip = &i; /* just fine */

ip = &x; /* forget it! */

xp = ip; /* bad */

&i = ip; /* meaningless */

J-153/25/2001

The NULL pointer
•During program execution, a pointer variable can
be in one of the following states:
•Unassigned (uninitialized)
•Pointing to a data object

•Contain the special value NULL (can also use 0)

•The constant NULL is defined as 0 in <cstddef>
(stddef.h), and is used to mean "a pointer that
does not point to any object."
• It does not mean "address 0 of the computer"

•NULL is compatible with all pointer types

J-163/25/2001

Pointers as Types
•Domain (possible values)
•The set of all memory addresses along with the NULL
pointer

•Some operations are valid on pointers of all types.
We’ll cover only a subset:
= (assignment)
int* p = &someInt;

* (dereference)
*p = 345;

== (equality test)
if (ptr1 == ptr2) { . . . }

//Carefull!! What is being compared?

J-173/25/2001

More Pointer Operations
!= (test for inequality)
if (ptr1 != ptr2) { . . . }

delete (deallocate)
delete ptr; // more on this later

-> (select a member of a pointed-to object)

void foo (BankAccount* b) {

b->printBalance();

}

// How would you write this if -> were not available?

J-183/25/2001

new: Allocating Memory
•Allocate dynamic memory with the new operator:
•The expression new Type returns a pointer to a newly
created object of type Type:
int *p, *p2;

p = new int; // allocate a single int

*p = 2001;

p2 = new int[10]; // allocate an array of ints

p2[0] = -17; // can use array notation with ptrs

•The memory allocated will be the right size for the
type of object
•The pointer locates the beginning of that memory area.

CSE 143 J

J-193/25/2001

new Could Fail!
int * bigP = new int [1000000];
•new returns NULL if the memory could not be
allocated (or throws an exception in newer
versions of C++)
•Advice: always test result
•Assert is simple:

int * bigP = new int [1000000];
assert (bigP != NULL);
•or make a test before using:

if (bigP != NULL) ... // go ahead and use the pointer
else ... // take some recovery action

J-203/25/2001

Deallocation
•Deallocate memory with the delete operator:
• delete Pointer deallocates the object pointed to by Pointer

delete p; // deallocating a simple object

delete [] str; // deallocating an array of objects

• The proper amount of memory is released

•Delete does not alter the bits in the pointer!
•Useful habit:

delete p; // p not changed
p = NULL;

•The memory MUST have been allocated via new
•Woe if you try to delete local memory, etc.

•Disaster if you use delete instead of delete[] or vice versa

J-213/25/2001

Where does the memory come from?

•Objects created by new come from a region of
memory set aside for dynamic objects
•Sometimes called the heap, or free store
•Textbook doesn’t use those names

•The new operator obtains a chunk of memory
from the heap; delete returns that memory to the
heap.
•In C++ the programmer must manage the heap.
•Dynamic memory is unnamed and can only be
accessed through pointers.

J-223/25/2001

Heap Memory

int *v, *w;

v = new int;

w = new int[5];

BA *pBA;

pBA = new BA;

delete v;

delete [] w;

delete pBA;

local heap

J-233/25/2001

Dynamic Memory: Review So Far

•new gets memory, delete gives it back
•In all cases: The new operator returns a pointer to
an object.
•Unless new fails -- then returns NULL (or throws an
exception, which probably terminates the program)

•The memory is on the heap
•unlike local variables, which are in the activation record
(stack frame)

J-243/25/2001

Dynamic Memory Is Dangerous

•A major source of program bugs
•Memory leaks: not giving back allocated memory

•Dangling pointers: using a pointer to memory no longer
allocated
may silently clobber data

•Using uninitialized pointers
may silently clobber data

•Security violations: giving client access to private data

•These are run-time errors
•Compiler can’t catch them

•The program may appear to run correctly... sometimes

CSE 143 J

J-253/25/2001

A Quote from Bjarne Stroustrup

"C makes it easy to shoot yourself
in the foot; C++ makes it harder,
but when you do, it blows your
whole leg off."

J-263/25/2001

Memory Leak Example

•Failure to return objects to heap ("memory leak")
•Computer might run out of resources
BankAccount *pBA;

for (int i = 0; i < 100000000; i++)

pBA = new BankAccount;

•“Garbage:” allocated memory for which there is no
pointer
•It’s not always this obvious!

J-273/25/2001

Garbage (Memory Leak)
•Example

int* p;

p = new int;

*p = 45;

p = new int; //!

*p = 55;

•Example 2
int *p, *q;

p = new int;

q = new int;

*p = 45;

*q = 55;

p = q; //!

p

p

q

local vars. heap

J-283/25/2001

Dangling Pointers
•Example 1

int *p = new int;

int *q;

*p = 45;

q = p;

delete p;

*q = 55; // oops!

•Example 2
char* broken() {

char buffer[80];

cin >> buffer;

return buffer;

}

charPtr = broken(); // charPtr is dangling

Destroyed when function exits!!

p

q

local vars. heap

J-293/25/2001

Anything Wrong?

void swap (book & a, book & b) {

book * temp;

*temp = a;

a = b;

b = *temp;

}

// example call:

swap(book1, book2); // note: no &

J-303/25/2001

Security Crack
int * Performance::getDuration (void) {

return &duration; //duration is a private
//member variable of the class

}

//client
performance perf1;
....
int * dur = perf1.getDuration();

CSE 143 J

J-313/25/2001

Giving Away What's Not Yours

Performance X ("Pearl Jam", "Main Stage");
Performance * Y = &X; //OK
Y -> setTime (3, 30, 70); //OK
...
delete Y; //don't do it!

J-323/25/2001

new with Classes

•If the object that you allocate with new is a class
instance: then the constructor has been called.
•Might be the default constructor
bankAccount *BP; //no constructor called here!

BP = new bankAccount; //constructor called

bankAccount * AllAccounts = new bankAccount[1000];

//Reminder: system-supplied default does not initialize
member variables

•You can pass arguments to constructors, too.
bankAccount * b1 = new bankAccount ("J. Smith", 5.00);

•What's wrong with this one?
bankAccount BadB = new bankAccount;

J-333/25/2001

Safety Guidelines
•Avoid creating garbage when invoking new or
moving pointers.
•Don’t lose the pointer
•Don’t dereference an unassigned pointer.
•After new, check that the pointer is not NULL
•After delete, don't use the pointer again
• If paranoid, set the pointer to NULL yourself

•Avoid security cracks

J-343/25/2001

Detour: Arrays vs. Pointers
•An array name refers to the address of the first
element of the array
char qarr [10]; //true or false: qarr == & (qarr[0])

•Array notation can be used with pointers, and
vice-versa

bool manglestring (char aName[], char * bName) {

int i = 0;

while (bName[i] != ‘\0’){

aName[i] = bName[i];

i++;

}

aName[i] = ‘\0’;

if (islower (*aName)){

...

}

J-353/25/2001

“Dynamic” Arrays
•We can get “dynamic” arrays this way

•Old “static” arrays:

const int MAX_BOOKS = 20;

book bookArray[MAX_BOOKS];
•New “dynamic” arrays:

int book_count = 20;

book *bookArray = new book[book_count];

...

book_count = 2 * book_count;

//this does not change the size of bookArray!!

J-363/25/2001

Nevertheless... Arrays ≠≠≠≠ Pointers!

int * ip; //what memory is allocated?
int iarr[10]; //what memory is allocated?

iarr[0] = 100; //good or bad?
ip[0] = 200; //good or bad?
ip = iarr; //good or bad?
iarr = ip; //good or bad?
ip = new int[20]; //good or bad?
iarr = new int[20];//good or bad?

CSE 143 J

J-373/25/2001

Guru Stuff: Pointer Arithmetic

•You can do arithmetic on pointers
•p+1 points to the next item of its type
•Does not mean "the next byte after p"

•Takes into account the size of the type

•Under the hood:
•Arr[N] is really *(Arr + N)

J-383/25/2001

Trace and Find Mem. Errors
int *p1, *p2; // line 1

int i; // line 2

p1 = new int; // line 3

*p2 = 5; // line 4

int *p3 = p1; // line 5

p2 = new int[4]; // line 6

delete p3; // line 7

p3 = NULL; // line 8

p2 = &i; // line 9

*p1 = 15; // line 10

delete p2; // line 11

