
CSE 143 G

G-13/25/2001

CSE 143

More Stream I/O

Appendix A

G-23/25/2001

Streams as C++ Classes
•Streams are C++ classes
•Streams have lots of built-in methods
•We use the “.” syntax to access member
functions, as usual.

inFile.get(ch); // get a character

outFile.put(ch); // put a character

outFile.getline(str, len); //get a whole line

outFile.close(); // close the stream

inFile.eof(); // end of File??

G-33/25/2001

Stream Classes
•cin and cout are defined in <iostream>.
•Library <fstream> contains similar classes
for file I/O
•Input stream classes:
•istream: console input (cin)
•ifstream: file input

•Output stream classes
•ostream: console output (cout, cerr)
•ofstream: file output

G-43/25/2001

Stream Class Relationships
•Every ifstream (file) is also a istream.
•An ifstream is an “enhanced” istream that has extra
capabilities to work with disk files
An ifstream object can be used wherever an istream
object is needed (function parameter, for example)

•But the reverse is not true. An istream is not also an
ifstream.
So if an ifstream is explicitly called for, cin can’t
be used

•A similar relationship holds between ofstreams
and ostreams.
•This is an example of "inheritance"
•An important object-oriented concept we will study later

G-53/25/2001

Reading a Whole Line
•Reading

Seattle Rain
•vs

Seattle-Rain
•cin >> stringvar won’t do the former -- why?
•Need an additional function: getline

cin.getline (stringvar, len);
•Dot notation! What’s happening here??
•Answer: Remember, cin and cout are really objects

G-63/25/2001

Unformatted Stream I/O
•>> and << provide formatted I/O.
•There are member functions which provide
unformatted (character-level) I/O. Examples:
char ch; char s[100];

cin.get(ch); // read 1 character into ch
cin.getline(s,n); // read next line into s
cout.put(ch); // write 1 character ch

•Variations available to limit how many
characters are read, specify end-of-line
characters, etc.



CSE 143 G

G-73/25/2001

Stream States (Review)
•All streams have a “state”.
•All streams are objects (instances of stream
classes)
•Several member functions are available to
check or set state.

cin.eof(); // true if cin eof reached
cin.clear(); // set state to “good”

•The stream itself can be used in an
expression to check its state

if (!cin)
cerr << “error or eof on cin” << endl;

G-83/25/2001

End-Of-File State
•Means there is no more input in the stream
•eof is a state; it's not a special value in the stream
•eof is most often used with files
•eof with keyboard input?
•User signals by typing a special key combination

•CNTL-Z, CNTL-D, etc. depends on operating system

•The special key is NOT sent to the program. The eof
status is what is detected.

G-93/25/2001

Input Errors
•Stream input “fails” if the next thing in the
input has the wrong format or if there is no
more data (end of file).
•If an input operation fails, the variable
involved is not changed.

if (cin >> k)
cout << “new value for k read ok”;

else
cout << “input failed; ”

<< “k not changed”;

G-103/25/2001

Input Errors (cont)
•Once a stream input operation has failed,
any further operations will also fail until the
stream state is cleared.

// suppose next input is “xyz”
cin >> k; // fails (why?); k unchanged

cin >> j; // cin state not good, so
// nothing happens

cin.clear(); // cin can be used for
// input again

G-113/25/2001

Recall: BankAccount class
•We’ve seen several variations on a bank
account class

// Representation of a bank account
class BankAccount {
public:
// create account with given owner
BankAccount(string name);
// add amount to account balance
void deposit(double amount);
// = current account balance
double amount();

private:
string owner; // account holder’s name
double balance; // current account balance

};

G-123/25/2001

User-Defined Stream I/O
•We would like to define stream I/O for bank
accounts so we could do things like this…

#include <iostream>
using namespace std;
int main() {

BankAccount ba(“Lazowska”);
...
ba.deposit(450);
cout << ba << endl;

}



CSE 143 G

G-133/25/2001

Overloading <<
•What’s needed is to define the meaning of << for
BankAccounts. In essence, we want

??? operator<<(ostream &s,
const BankAccount & b) {

s << “Account owner is ” << b.owner
<< “, balance is ” << b.balance;

}

•Issues
•How does operator<< access fields of b?
•What is the result type of operator<<
•operator<< can’t be a member function (why?)

G-143/25/2001

friend functions
•Sometimes operator<< can be written using only public

operations of the class
•If it needs access to private details, declare it in the class

as a friend function
// Representation of a bank account
class BankAccount {
public:

...
private:

string owner; // account holder’s name
double balance; // current account balance

friend ??? operator<<(ostream& s,
const BankAccount & b);

};

•(Still to do: fix result type of function)

G-153/25/2001

operator<< result
•The issue is that stream operators are supposed
to chain
•Example

BankAccount a, b;
...
cout << a << b << endl;

•operator<< is left associative, so this means

(((cout << a) << b) << endl);

G-163/25/2001

operator<< result
•If we write this out explicitly, it’s fairly easy to see
that the result needs to refer to the stream
somehow

operator<<(
operator<<(

operator<<(cout,a),
b),

endl)

•The correct result type is a reference to the type
of the stream.

G-173/25/2001

Definition of BankAccount <<
•Declare << as a friend function if needed

class BankAccount {
private:

...
friend ostream & operator<<(ostream& s,

const BankAccount & b);
};

•Have operator<< return a reference to the stream
ostream & operator<<(ostream &s,

const BankAccount & b) {
s << “Account owner is ” << b.owner

<< “, balance is ” << b.balance;
return s;

}

return reference to the stream

G-183/25/2001

Notes and Advice
•File and stream processing can get VERY
baroque
•Many details, gotchas, exceptions, etc. in the C++
•File formats are often complex

•Learn the basics
•Try to keep it simple (not always possible)
•You can't memorize it all
•Buy a good C++ book and keep it handy when
programming!
•Bookstore has lots to choose from. Browse and buy one
you like


