
CSE 143 D

D-13/25/2001

CSE 143

Abstract Data Types

[Chapter 3]

D-23/25/2001

Data Abstraction

What is Abstraction?
•An idealization

•A focus on essential qualities, disregarding the
“details”

•An emphasis on the what rather than the how
Specification vs. Implementation

•A problem-solving technique

D-33/25/2001

Abstraction in Programming
•The type int is an abstraction for a way of
interpreting bits in memory as a number
•A struct is an abstraction of a collection of
related data items
•A function is a programmer-designed
abstraction for some computation
•A module is a programmer-designed
abstraction that groups related functions and
data together and provides an interface

D-43/25/2001

Why Abstraction?
•Abstractions helps in managing complexity
•Don’t need to know details, just interface

•Treat abstractions as “black box” components
to build upon
•Know what inputs go into box, and what outputs
come out, but not what goes on inside the box

•Hierarchical or layered decomposition

D-53/25/2001

Review: Types vs. Instances

•Types
•General category
•Usually few in number
•Some built in (int, char, double, etc.)
•Programmer-defined (arrays, structs,
enums, classes, etc.)

•Instances
•Particular variables, parameters, etc.
•May have many instances of a given type

D-63/25/2001

Abstract Data Types

•ADTs have two aspects:
•Collection of data

•Operations that can be applied to data

•Examples
•Integers: arithmetic operations, printing, etc.

•Boolean: AND, OR, NOT, test if true, etc.

•Grade Transcript: Add, remove classes and
grades, change grades, etc.



CSE 143 D

D-73/25/2001

Type = Data + Operations

•More Examples:
•Automatic Teller Machine
Data: cash available, machine status

Operations: get account information, dispense

cash, confiscate card, ...

•Telephone network switch
Data: line status, call information

Operations: set up and break down calls, send

billing information, test circuits,...

D-83/25/2001

Abstract Data Types
Two separate aspects:
•Interface
•Name of new type
•“Constructors” to make instances
•Public operations on instances

•Implementation
•Data representation of new type
•Implementation of public operations,
constructors
•Additional private operations

D-93/25/2001

Implementer / Client / User
•Implementer (programmer)
•writes the internal details of some part of the system

•defines interface and implementation

•Client (programmer)
•uses the interface of the "black box" provided by the
Implementer

•does not (directly) use the implementation!

•User (non-programmer)
•sees only the exterior behavior of the system

•Related language for functions: Caller vs. called

D-103/25/2001

Textbook example: List ADT

•A list… names, groceries, numbers, etc.
•What do you need to do?
•Create and destroy a list

•Find out how long it is

•Add (insert) new items to it
•Delete items

•Look at (retrieve) items

•Vector
•A list where you can retrieve values by their index

D-113/25/2001

Bank Accounts (Another ADT Example)

•Data
•Owner Name
•Owner SSN
• Balance
• Transaction history
•…

•Operations
•Create
•Deposit
•Withdraw
• Balance Inquiry
•…

Client
Program

D-123/25/2001

Bank Accounts (Another ADT Example)

•Data
•Owner Name
•Owner SSN
• Balance
• Transaction history
•…

•Operations
•Create
•Deposit
•Withdraw
• Balance Inquiry
•…

Client
Program

?



CSE 143 D

D-133/25/2001

Bank Accounts (Another ADT Example)

•Data
•Owner Name
•Owner SSN
• Balance
• Transaction history
•…

•Operations
•Create
•Deposit
•Withdraw
• Balance Inquiry
•…

Client
Program

Bank Acct ADT D-143/25/2001

Classes vs. Structs
•A lot like a C struct in syntax:

class BankAccount {

// Class member declarations
};

•Two enhancements support encapsulation
•Members (= components) can be functions
not just data

•Can specify private vs. public members

D-153/25/2001

Great Ideas, but...
•How do we actually get modularity, abstraction,
ADTs, black boxes, etc. in our programs?
•Terminology: "Encapsulation" means wrapping up
the data and operations together in a clean
package
•Historical note: for many years programmers have
struggled to do this.
•Recent programming languages make it (much) easier.

•Next topic: the key feature of C++ which helps
achieve these modularity goals


