
CSE 143 B1

B1-13/25/2001

CSE 143

Basic Stream I/O

Appendix A

B1-23/25/2001

Input/Output Concepts

•Concepts should be review!
•New syntax, but same fundamental concepts

•input vs. output, read vs. write
•conversion between characters in a stream and
C/C++ data values (types) in a program
•File concepts
•what is a file?

• file name vs. file variable
•open, close

•end-of-file

B1-33/25/2001

What's a Computer?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

B1-43/25/2001

Stream I/O

•The basic C++ I/O library is built
around the concept of streams.
•both for keyboard/monitor and for files

•Old C-style printf, scanf, etc.
library is still available, but….
•Mixing the two is bad news
•You must use only stream I/O in
CSE143

B1-53/25/2001

What is a Stream?
A stream is just a sequence of characters,
nothing else:

S m y t h e , J . 9 7 0 1 4 3

anInputStream Input cursor

W e l c o m e t o

anOutputStream Output cursor

C++ Program

input via >> operator

output via << operator

6 4

B1-63/25/2001

Only characters?!
•Wait a minute... if the stream is only characters,
how can we read or write integers, or doubles, or
strings?
•Answer: the library functions convert other types
to and from characters.

Example: the stream contains
45

That is two characters, not a number!
cin >> i; converts the two characters into an
integer and stores it in the integer variable i.

CSE 143 B1

B1-73/25/2001

Well-Known Streams
•Global streams defined in <iostream> :
•cin: standard input stream (usually keyboard)
•cout: standard output stream (usually screen)
•cerr: standard error stream (also usually
directed to the screen)

•Programs can open other streams to or
from files and other devices.

B1-83/25/2001

<< Review
For output streams, << is the “put to” or
"insertion" operator

#include <iostream>

using namespace std;

…

int count = 23;

cout << “Hello, World!” << ‘\n’;

// endl: same as ‘\n’, but flushes output

cout << “The count is ” << count << endl;

B1-93/25/2001

>> Review
For input streams, >> is the “get from” or
"extraction" operator

#include <iostream>
using namespace std;
…
int x, ID;
char Name[40];

cin >> x;

cin >> Name >> ID;

// Can read multiple items on one line

// Note: no &’s as with scanf

•<< and >> are aware of the types of the
data B1-103/25/2001

How Stream Input Works

Rule: With simple types: leading
whitespace is skipped

int ID;
char Name[40];
char ch;

cin >> ID; // interprets as integer
cin >> ch; // reads a char
cin >> Name; // interprets as character string,

// stopping at trailing whitespace

B1-113/25/2001

Built-in vs other types
•cin and cout understand the basic C++ types,
including strings
•They do not understand other arrays or user-
defined types (structs, classes, enums, etc)
•But... it is possible to “overload” << and >> to
understand your classes!
•Eventually you will be able to write

cout << myFavoriteBook
and have it do something reasonable

B1-123/25/2001

Stream States
•All streams are actually objects (instances of
stream classes)
• In particular, cout and cin are such objects

•All streams have a “state”.
•Once opened, the stream object should be a in
"good" state
•Remains thus until the end of file, or until any error
occurs

CSE 143 B1

B1-133/25/2001

End-Of-File State
•Means there is no more input in the stream
•eof is a state; it's not a special value in the stream
•eof is most often used with files
•eof with keyboard input?
•User signals by typing a special key combination

•CNTL-Z, CNTL-D, etc. depends on operating system

•The special key is NOT sent to the program. The eof
status is what is detected.

B1-143/25/2001

Input Error State

•Stream input “fails” if the next thing in
the input has the wrong format or there
is no more data
•Example: try to read an integer, but a
letter is encountered instead
•Example: trying to read something, but
already at end of file

B1-153/25/2001

Testing the State
•The state can be very simply tested by
treating the stream as a boolean(!)
•This is a special property of streams, and
doesn't work for most objects

cin >> k;

if (cin)

cout << “new value for k read ok”;

else

cout << “input failed, or at EOF; ”

B1-163/25/2001

Input Errors (cont)
•Once a stream input operation has failed,
any further operations will also fail until the
stream state is cleared.

// suppose next input is “xyz”
cin >> k; // fails (why?); k unchanged

cin >> j; // cin state not good, so
// nothing happens

cin.clear(); // cin can be used for
// input again

B1-173/25/2001

Example: Copy Integers
•This program copies integers from cin to
cout until an input operation fails. Each
integer is written on a separate output line.
#include <iostream>
using namespace std;

int main() {
int j;

while (cin >> j)
cout << j << ‘\n’;

return 0;
}

B1-183/25/2001

Next Step: Files
•Review: File is a named collection of data on disk
•Basic idea of using files in C++: Attach a file to a
stream!
•Then the characters of that file become the characters of
the stream.

•Use class (type) ifstream for input text files,
ofstream for output text files.

CSE 143 B1

B1-193/25/2001

Stream Classes
•cin and cout are defined in <iostream>.
•Library <fstream> contains similar classes
for file I/O
•Input stream classes:
•istream: console input (cin)
•ifstream: file input

•Output stream classes
•ostream: console output (cout, cerr)
•ofstream: file output

B1-203/25/2001

File Operations (Abstract)
•“open”
•Creating a variable to represent the file

•Allows you to access the file’s contents

•“read”
•getting data from the file, similar to cin >> var;

•“write”
•storing data to a file, similar to cout << var;

•“close”
•Tells the OS you’re finished with a file

•Can’t do any more reading/writing

•Might lose data if you forget to close!

B1-213/25/2001

Opening a File
•The simplest way to open a file is to give the
(disk) file name as a parameter when the file
stream variable is created:

ifstream infile (“testdata.txt”);

•This does two things
•Declares a variable named infile of type ifstream

•Opens it so it accesses the file named testdata.txt in the
current directory.

B1-223/25/2001

Opening & Closing Files
•The parameter giving the file name may be an
array of characters containing a C null-terminated
string (not, unfortunately a C++ string)

char filename[256];

cout << “enter file name: ”;

cin >> filename;

ifstream infile (filename);

•Files are automatically closed when exiting the
function that contains the file variable declaration

B1-233/25/2001

Testing the Stream
•The stream can be tested as if it were a boolean

if (mystream)...
•Two typical occasions for testing:
1. Right after opening, to see if the open worked

ifstream dfile (“data.txt”);
if (dfile) cout << “OK”; else cout << “bad”;

2. While processing, to see if end of file
while (dfile) //is the stream still good?

{ keep reading data}

B1-243/25/2001

File Copy Example (1)
#include <iostream>
#include <fstream>
using namespace std;

void main() {
ifstream inFile("input.txt”); // open input
ofstream outFile("output.txt”); // open output

// quit if files not opened
if (!inFile || !outFile) {

cout << “file open failed” << endl;
return 1;

}

CSE 143 B1

B1-253/25/2001

File Copy Example (2)
string word;

// copy words to output file, one word per line
while (inFile >> word) {

outfile << word << endl;
}

// files closed automatically when main exits
}

