
CSE 143 B

B-13/28/2001

CSE 143

Introduction to C++

[Appendix A]

B-23/28/2001

C++ vs. C
•C++ is a superset of C
•C++ has a huge number of new features

•Often criticized as overly complex

•(Almost) any legal program in C is also a legal C++
program.

•The core of C++ works the same as in C
•basic types, variables, expressions

•declaring and using functions

•statements (if, while, for, assignment, etc.)

B-33/28/2001

C++ vs. C (cont.)

•Major changes in C++:
•A “Better C”
•Support for Data Abstraction (user-defined
types)
•Support for Object-Oriented Programming

•We'll introduce the latter two gradually
•Today we focus on some of the “better
C” features

B-43/28/2001

A “Better C”
•cin and cout for stream input and output (plus
cerr)
•New comment style
•Relaxed placement of declarations
•Symbolic constants
•A real logical (Boolean) type: bool
•Better string library
•Enumerated types
•Structs as types
•Reference parameters

B-53/28/2001

A Simple C++ Program
// A first C++ Program

// Print a greeting message

#include <iostream>

using namespace std;

int main() {

cout << “Welcome to CSE143!” << endl;

return 0;

}

•//-comments extend from // to end of line
•Operator << writes the value of the right argument to the

output stream on the left, here cout -- the screen.
•endl ends a line of output and ensures that it is displayed

Right Now!.

B-63/28/2001

A Second C++ Program
// Read two integers and print their sum.

#include <iostream>

using namespace std;

int main() {

int i, j;

cout << “Please enter a number: “;

cin >> i;

cout << “Please enter another number: “;

cin >> j;

cout << “The sum of “ << i << “ and “ << j <<

“ is “ << i + j << endl;

return 0;

}

CSE 143 B

B-73/28/2001

Second C++ Program (cont.)

•Operator >> reads a value from the stream that is
its left argument (here cin, the keyboard) and
stores it in the variable given as its right argument.
•The >> and << operators can be strung together
to read or write several items in a single
statement.
•Important: Place your C++ functions in .cpp files (rather

than .c files).

•The “using namespace std;” directive accesses the names
defined in the header files

B-83/28/2001

Two Styles of Comments
•Old C-style comments
/* This is a comment */

•Double-slash comments (comment extends
from the // to the end of the line)
int id; // student ID number

•Which form is better?

B-93/28/2001

Declarations Go Anywhere

•C++ declarations can appear anywhere a normal
statement can:
void something (int x)
{

if (x == 10)
x = x / 2;

int y; // Declaration can occur here
...

}

•Common usage: for-loop index variables

for (int k = 0; k < 100; k++) {
// k is only defined inside this loop

}

B-103/28/2001

Symbolic Constants
•Constant variables

const double PI = 3.14159;

•const means that the value can't be changed
•From now on in CSE143, do not use #define …

#define PI 3.14159

•Why not?
•Because #define is strictly textual substitution.
•Explicit constants allow compile-time type checking and
scope analysis using same rules obeyed by (non-const)
variables.

•More about const another day

B-113/28/2001

New bool type
•Direct implementation of the "Boolean" concept
•bool has two legal values: true and false
•bool, true and false are reserved words

bool isBigNumber (double d) {

if (d > 30e6) return true;

else return false;

}

•Not supported in early C++ compilers (one reason
you want to have a recent version)

B-123/28/2001

int vs. bool
•bool and int values are usually interchangeable (for

backward compatibility)
•Review: in C, integer 0 is false, all other integer values are true.

•Use bool where Boolean values are natural
int i; bool b;
b = (mass >= 10.8); //value is true or false
if (b) ... //OK
while (b && !(i < 15)) ... //OK

•Avoid:
i = b; //marginally OK: value is 0 or 1
i = true; //OK, but bad style
b = i; //ill-advised (warning)

•cout <<
• displays 0 or 1 for bool values

CSE 143 B

B-133/28/2001

String Library

•C++ string type supports declaration, assignment,
comparison, concatenation (+), etc.
•Underlying representation is still ‘\0’-terminated array of

characters, but normally that can be ignored

#include <string>
using namespace std;

int demo() {
string name = “Fred”
string fullname;
fullname = name + “ Flintstone”;
if (fullname < “Ralph”) ...
...

}
B-143/28/2001

Enumerated Types

•User-defined type whose constants are
meaningful identifiers, not just numbers

enum Color { RED, GREEN, BLUE };

•Declare like other types; use like other integer
values

Color skyColor; ...

switch (skyColor) {

case RED: ...

case GREEN: ...

case BLUE: ...

}

B-153/28/2001

Structs as Types
•Old way:

typedef struct {
...
} Student_record;

•New way:
struct Student_record {

...
};

•Convention (e.g., as a matter of style): New type names
are capitalized
•Preview: in C++ we often use class instead of struct

Almost identical, but different connotations B-163/28/2001

Defining ‘main’
•Usual signature for main (as in C, except void
keyword not needed as a parameter):

int main () { ... return x; ... }
•Sometimes seen in old code (but nonstandard!):

void main () { /*no return*/ ...}
•A few others are possible, too. For you hackers:

int main (int numArgs, char * argArray[]);
•Allows OS to provide command line arguments to the
program.

B-173/28/2001

Parameters (Review)
•Puzzler: What does this print?

#include <iostream>
using namespace std;
…
// Double the value of k
void dbl(int k) { k = 2 * k; }

int main() {
int n = 21;
dbl(n);
cout << n << endl;

}

•Output:

B-183/28/2001

Value vs. Reference
•The default in C/C++ is call by value
•a copy of the actual argument is made
•exception: arrays

•C technique for call by reference: use a pointer
as the argument
•Can still do this in C++

•Reference parameters are more efficient for large
objects (why?)
•Reference parameters can be less safe than call
by value (why?)

C++ supports call by reference directly...

CSE 143 B

B-193/28/2001

Reference Parameters
•Use & in parameter declaration to make
the parameter an alias for the argument.

// Double the value of k
void dbl(int & k) { k = 2 * k; }

int main() {
int n = 21;
dbl(n);
cout << n << endl;

}

•Output:
B-203/28/2001

Reference as an Alias
•The parameter is an alias for actual argument
•Achieves same effect as pointer parameters,
but
•Use & in parameter declaration
•No explicit & in argument
•No explicit * when parameter used

•Assignments to parameter changes argument
•Why? because one is an alias of the other

