
CSE 143 Sp01 Midterm 2 Sample Solution page 1 of 7

Part I: Short Answer (6 questions, 18 points total)

Answer all of the following questions. READ EACH QUESTION CAREFULLY. Answer each
question in the space provided on these pages. Budget your time so you spend enough on the
programming questions at the end.

Keep your answers short and to the point. Good luck.

The first 4 questions all refer to the following related class declarations. Implementations of
most, but not all, of the functions are given in the declarations.

class Person {
public:

Person(string inName, bool inIsFemale) { name = inName; isFemale = inIsFemale; }
virtual ~Person() { cout << “aaaarghhhhh…” << endl; }
virtual string getName() { return name; }
virtual bool getIsFemale() { return isFemale; }

/*1*/ virtual void eat(int amount) = 0;
private:

string name; // person’s name
bool isFemale; // true if person is female

};

class Man : public Person {
public:

Man(string inName) : name (inName), isFemale (false) { }
/*2*/ virtual void eat(int amount) { if (amount > 5) burp(); }
/*3*/ virtual void eat(string what) { if (what == “steak”) burp(); }

virtual void burp() { cout << "buuurrrrp" << endl; }
};

class King : public Man {
public:

King(string inName); // not implemented here
virtual ~King() { cout << “you too, Brutus?!” << endl; }
virtual void burp() { burp(); cout << "It's good to be the king!" << endl; }

};

1. (3 points) The constructor for Man contains an error. What is the problem, and how could you
fix it?

The constructor is attempting to access private data in class Person (name, isFemale). The
fix is to use a proper initializer using the constructor for Person:

Man(string inName) : Person(inName, false) { }

CSE 143 Sp01 Midterm 2 Sample Solution page 2 of 7

2. (3 points) The constructor for King should create a male person, with the specified name,
preceded with “His Highness, King “ (e.g., if the argument to the constructor were “Louis XV”,
then name should be initialized to “His Highness, King Louis XV”). Implement it below, as it
would appear in a separate .cpp implementation file.

King::King(string inName) : Man(“His Highness King ” + inName) { }

(Some answers had Person(“His Highness King ” + inName, false) as the initializer. This
isn’t legal – the only constructors that can be used are those of the immediate base class.
However, we decided to give credit for that answer, since it is a technical point that we
haven’t covered carefully.)

3. (3 points) The function King::burp() is syntactically correct, but contains a bug. What is the
bug, and how could you fix it so that the king burps first (by calling an appropriate function to
write the string “buuurrrrp”), and then says “It’s good to be the king!”? Give an implementation
below, as it would appear in a separate .cpp implementation file.

The function call burp() inside King::burp() is a recursive call to itself, which creates an
infinite recursion.

void King::burp() {
Man::burp();
cout << “It’s good to be the king!” << endl;

}

4. (3 points) What is the relationship between the eat functions marked “/*1*/”, “/*2*/” and
“/*3*/”? Circle the correct answer. (Only one of these choices is correct, although there may be
other ways, not given here, to describe the relationships between the functions.)

a) /*1*/ overrides /*2*/ and overloads /*3*/

b) /*2*/ overrides /*1*/ and overloads /*3*/

c) /*2*/ overloads /*1*/ and overrides /*3*/

d) /*3*/ overloads /*1*/ and overrides /*2*/

CSE 143 Sp01 Midterm 2 Sample Solution page 3 of 7

5. (3 points) What happens when the following program is executed? If there are errors in the
code, indicate where the errors occur and explain them. If the program is ok, write the output in
the space provided.

#include <iostream>
using namespace std;

class plane {
public:

virtual void takeoff() { cout << “whoosh!” << endl; }
virtual void landing () { cout << ”Plane going down” << endl; }

};

class transport:public plane {
public:

void landing() { cout << ”Transport going down” << endl; }
void refuel() { cout << ”Transport is refueling” << endl; }

};

int main() {
plane *planePtr = new transport;
planePtr->takeoff();
planePtr->landing();
delete planePtr;
return 0;

}

Output:

whoosh!
Transport going down

CSE 143 Sp01 Midterm 2 Sample Solution page 4 of 7

6. (3 points) The following program reads a number from cin and calls function test with that
number as an argument:

#include <iostream>
using namespace std;

void test(int n) {
if (n > 1) {

test(n-1);
}
cout << n << “ “;

}

int main() {
int i;
cin >> i;
test(i);
return 0;

}

Which of the following possible outputs could be produced when the program is executed,
assuming the user enters a suitable input number? (If there are two or more correct answers,
circle all of the correct ones.)

a) 1 2 3 4 5

b) 5 4 3 2 1

c) 0 1 2 3 4

d) 4 3 2 1 0

CSE 143 Sp01 Midterm 2 Sample Solution page 5 of 7

Part II. Programming Problem (1 question, 20 points total)

7. You’ve been hired by UW to modify their student records database. Assume that the
following classes are defined to store information about student grades.

class StudentRecord { // single grade entry for a student:
public:

string name; // student name
string course; // course name, e.g., “CSE143”
double grade; // student’s grade in the course

};

class StudentDatabase { // List of student grade entries
public:

StudentDatabase(); // construct empty list
~StudentDatabase(); // destructor

// Look for a record containing the given student name and course name.
// If found, replace the previous grade with newGrade; otherwise, create
// a new student record with the given information and add it to the database,
// expanding the list if needed.

void addGrade(string studentName, string courseName, double newGrade);

private:
int capacity; // current allocated size of array records
StudentRecord *records; // student records are stored in records[0..size-1]
int size; // current size of the list

};

The grades are stored in a dynamically allocated array named records. The list is not sorted. The
array should be automatically expanded as needed to hold additional data.

(a) (3 points) Complete the implementation of an appropriate destructor for this class.

StudentDatabase::~StudentDatabase() {

delete [] records;

}

CSE 143 Sp01 Midterm 2 Sample Solution page 6 of 7

(b) (17 points) Give an implementation of function addGrade so it changes an existing grade or
adds a new record as specified. If the list is already full when a new grade record is added, its
capacity should be doubled to make additional room first.

If you want to use additional helper functions in your solution, give their implementations here.
You do not need to worry about adding their declarations to the class declaration.

// Look for a record containing the given student name and course name.
// If found, replace the previous grade with newGrade; otherwise, create
// a new student record with the given information and add it to the database,
// expanding the list if needed.

void StudentDatabase::addGrade(string studentName, string courseName, double newGrade) {

// Search for matching record; if found, update grade and return
int k = 0;
while (k < size) {

if (records[k].name == studentName && records[k].course == courseName) {
records[k].grade = newGrade;
return;

}
k++;

}

// Not found – add new record to database

// If array is full, double its size
if (size == capacity) {

capacity = 2*capacity;
StudentRecord * newRecords = new StudentRecord[capacity];
for (k = 0; k < size; k++) {

newRecords[k] = records[k];
}
delete [] records;
records = newRecords;

}

// add new entry to the list
records[size].name = studentName;
records[size].course = courseName;
records[size].grade = newGrade;
size++;

}

(see note on next page for another version of the search)

CSE 143 Sp01 Midterm 2 Sample Solution page 7 of 7

This version of the search that combines the test for a match with the check for whether all
records have been searched. Note that it is crucial that the k<size check appears first in the
condition. (Why?)

// Search for matching record; if found, update grade and return
k = 0;
while (k < size &&

(records[k].name != studentName || records[k].course != courseName) {
k++

}

if (k < size) {
records[k].grade = newGrade;
return;

}

// Not found – add new record to database
…

