CSE 143

Trees

[Chapter 10]

W-1

Linear vs.

» Our data structures so far are linear

— Have abeginning and an end

— Everything fdlsin order between the ends

— Arrays, linked lists, queues, stacks, priority queues, etc.
» Everyday life has structures, too.

— Family geneaogy

— Biology: phylum/genus/species

— Company organization chart

— Table of contents

W-2

Board of Directors

Branching Structuresin CS

« Treesare acommon branching structurein CS
* We've seen dready:
— Class hierarchies
— Cdl graphs
— Recursive function traces
« PS: Some of these won't quite be “trees’ under
our official definition

W-4

CEO
Engineering Manufactuting Sdes
Foreign Domestic
Development Operétions Sdes
Research =
‘ Overseas ‘ Foreign
M anufacturing| Sdes s
A Tree

nodes (vertices)

W-5

What'sin aNode?

* Answer: anything you want!

» Could have atree of ints, tree of students, animals,
appointments, etc.
— All nodes will be of the same (base) type

« For simplicity, we often label the nodes with a
single letter or an integer

W-6

Formal Textbook Definition

e A general tree T iseither empty, or is a set of
nodes such that T is partitioned into digoint
subsets:

1. A subset with asingle node r (called the root)

2. Subsetsthat are themsel ves generd trees (these are
caled the subtrees of T).

* Notes:
— Thisdefinition is recursive!

— The nodes are not defined. They can be anything, and
still satisfy the definition.

wW-7

Tree Terminology

« Empty tree: tree with no nodes
Child of anode u

— Any node reachable from u by 1 edge pointing
away fromu

— Nodes can have zero, one, or more children
 Leaf: anode with no children
¢ If pisachild of a, then a isthe parent of b

— All nodes except root have exactly one parent
— Root has no parent

w-8

Descendants

» Descendant of anode (recursive definition)
— 1. Pisadescendant of P for any node P
— 2. 1f Cisachildof P, and P is adescendant of A,
then C is a descendant of A
* Puzzle: neither rule states explicitly thatif C ()
isachild of P, Cisaso adescendant of P. kG
Isit? Do we need another rule?
* Example: O
— what are the descendents of j?
— Of what is| adescendant?

w-9

Subtree Terminology
¢ Subtree

— Any node of atree, with dl of its descendants
— Puzzle: is b-c asubtree of thetree starting a a?Isit atree?

Ancestors
« Ancestor of anode ®
— Definition: If D is adescendant of A, then A is ® (W
an ancestor of D
* Example: 5, k, and 1 are ancestors of 1 O
3/900
W-10
Height and Level
« Level or depth (recursive definition)
— Level of root nodeis 1 @ !
— Level of any node other than Q-2
root is one greater than level

of its parent @ ®®»3
« Height 9
— Height of atreeis maximum of al depths of itsleaves
— Height of empty treeis defined to be 0
e Warning: Definitions vary
— Some textbooks define level of the root node as 0,
« o root node height would be O, empty tree height would be -1

3/900
W-12

Binary Trees

* A binary tree is atree each of whose nodes has
no more than two children

— The two children are called the left child and right
child

« Thetreeswhich start with these children are called the left
subtree and the right subtree

— Seetextbook for forma recursive definition

Left child -

. Right child

Importance of Binary Trees

Binary trees are widely used in Computer Science
Much easier to represent (find a good data
structure for) than general trees

Much easier to manipulate (write and implement
algorithms) than general trees

Turns out that any general tree can be represented
using a binary tree.

— Won't discussin this course

Binary Treeasan ADT

¢ Textbook lists 18 operations!
— constructors and destructors
— bool isEmpty
— return/set root data
— attach left or right child nodes
— attach left or right subtrees
— detach left or right subtrees
— return acopy of left or right subtree
— traversds (more | ate)

Implementing A Binary Tree

¢ Using an array
— Efficient
— See textbook 452-453 for details
« won't discuss further in this course
— Drawbacks: not flexible in terms of size; wastes space
if tree is unba anced
» Using dynamic memory
— Similar to linked list implementation
— Two pointers, one each for left and right subtrees
— See textbook 455ff for details
« Will use in this course

Binary Tree Data Structure

 Binary tree node (for atree of ints): root
struct BTreeNode { /
int item; item [
BTreeNode *left; 1eft‘right
BTreeNode *right; 7 \
}:
» Keep aroot pointer to the root node
— Anaogous to head pointer for alinked list
— Empty tree has aNULL root
« will usually omit NULL pointers when drawing pictures
 This example shows node for atree of ints
— but “item” could be any type, even aclass object

3/900
W-17

Example: Counting Nodes

» Base case: Empty tree has zero nodes

» Recursive case: Nonempty tree has one node
(the root) plus nodes in left subtree plus nodes
in right subtree

int CountNodes (BTreeNode *root)
if (root == NULL
return 0; // base case
else

return 1 + CountNodes (root->left
+ CountNodes (root->right) ;

Binary Trees and Recursion

struct BTreeNode {
int item;
BTreeNode *left;
BTreeNode *right;

}i
* Note the recursive data structure
 Algorithms often are recursive as well

» Don'tfightit! Recursion is going to be the natural
way to express the algorithms
— Chdlenge: code CountNodes without using recursion

Finding the Height
» Base case: Empty tree has height 0

* Recursive case: Nonempty tree has height 1 more
than maximum height of left and right subtrees

int Height (BTreeNode *root) {
if (root == NULL
return 0;
else
return 1 + max(Height (root->left),
Height (root->right)) ;

Analyses

* What is running time of these algorithms?
— Time to execute for one node: O (1)
— Number of recursive calls: O (N)
© N isthe number of nodesin tree
« There' sno way to miss any node

« There' sno way to get to any node twice

— Each node is called from its parent, and a node has only
one parent

Exercises

Do try these at home!

1. Find the sum of all the values (items) ina
binary tree of integers

¢ 2. Find the smallest valuein aB.T. of integers

* 3. (A little harder) Count the number of leaf nodes
inaB.T.

* 4. (A little harder) Find the average of al the
valuesinaB.T. (one approach: think in terms of a
“kickoff” function)

Recursive Tree Searching
* Howtotell if adataitemisinabinary tree?

bool find (BTreeNode *root, int item) {

if (root == NULL)
return false;

else if (root->data == item)
return true;

else
return (find(root->left, item) ||

find(root->right, item));

Complexity of Find

* What is the running time of this algorithm?

— Worst case: Has to visit every nodeinthetree, O (N)
» Canwe do better?

— Answer: not without changing the data structure

— Wewill shortly look at abinary search tree

« Itemswill have an order, which will make searching more
efficient.

— But first we take up another topic: traversas.

Tree Traversal

 Functions to count nodes, find height, sum, etc.
systematically “visit” each node
e Thisiscalled atraversal
— We d so used this word in connection with lists.
e Traversal is a common pattern in many
agorithms
— The processing done during the “visit” varies with the
agorithm
* What order should nodes be visited in?
— Many are possible

— Three have been singled out as particularly useful:

preorder, postorder, and inorder S0
W-25

Pre and Post Order Traversals

o Preorder traversal:
—“Visit” the (current) node first
« i.e., do what ever processing is to be done

— Then, (recursively) do preorder traversal onits
children, left to right

Postorder traversal:

— First, (recursively) do postorder traversals of
children, left to right
— Vidit the node itself last
¢ PS: These algorithms make sense for non-
binary trees, too. 390

W-26

Inorder

 Unlike pre- and post-, makes sense only for binary
trees

 Inorder traversal:

— (Recursively) doinorder traversa of left child
— Then visit the (current) node
— Then (recursively) do inorder traversa of right child

Example of Tree Traversal

Assume this question: in
what order are the nodes
visited, if we start the
process & the root?

Preorder:
Inorder:
Postorder:

More Practice
What about this tree?

Preorder:

Inorder:

Two Traversals for Printing

void void
printInOrder (BTreeNode* (BTreeNode*
) {) {

if (t!=NULL){ if (t!=NULL){
printinOrder (t->left); cout << t->data<<*“ “;
cout << t->data<<*“ “; (t->left);
printinOrder (t->right); (t->right);

} }

} }

Traversing to Delete

« Use apostorder traversal to return awhole tree to

the heap.

void deleteTreg(BTreeNode* t) {
if (t!=NULL){
deleteTree(t->left);
deleteTree(t->right);
deletet;
}
}
» Would inorder or preorder work just as wej|2?

W-31

Analysis of Tree Traversal

¢ How many recursive calls?
— Two for every node in tree (plus one initial

- O (N) intotal for N nodes
* How much time per cal?
— Depends on complexity O (V) of the visit

— For printing and most other types of traversal,
visitisO (1) time

« Multiply to get total
-0 (N)*O (V) = O(N*V)
¢ Does tree shape matter?

Sidebar: Syntax and Expression Trees

« Computer programs have a hierarchical
structure
— All statements have afixed form
— Statements can be ordered and nested almost
arbitrarily (nested if-then-else)
 Can use a structure known as a syntax tree
to represent programs
— Trees capture hierarchical structure

A Syntax Tree
Consider the C++ statement:
if (a==b + 1) x =y; else ...
statement
if (expresson) statement else atement
equality expression ; \
expréssion __ expresson LHS = expression
PN
var var + c?ns var var
‘a b 1 x ﬁ;

W-34

Syntax Trees

¢ Compilers usually use syntax trees when
compiling programs
— Can apply simple rules to check program for
syntax errors
— Easier for compiler to translate and optimize
than text file
 Process of building asyntax treeis called
parsing

Binary Expression Trees

¢ A binary expression tree isa syntax tree
used to represent meaning of a
mathematical expression
— Normal mathematical operatorslike +, -, *, /

« Structure of tree defines result

 Easy to evaluate expressions from their
binary expression tree

Example
5* 3 + (9 -1) / 4 -1

+Al
AN N

Expression Magic

« Traverse in postorder for postfix notation!

53 *91-4/+1-

e Traversein preorder for prefix notation

-+*53/-9141

* Traverseininorder for infix notation

5% 3 +9-1/4-1

— Note that operator precedence may be wrong!
Correction: add parentheses a every step

(((5%*3) + ((9 - 1) / 4)) - 1)

3/900

Trees Summary

¢ Treeasnew hierarchica ADT

— Recursive definition and recursive data
structure

¢ Tree terminology
— Nodes; Root node, leaf nodes
— Children, parents, ancestors, descendants
— Depth of node, height of tree
— Subtrees

Trees Summary (2)

Binary Trees
— Either 0, 1, or 2 children a any node
— Recursive functions to manipul ate them

Binary Tree Implementation

— Vianode with two pointers

Tree Traversals

— Preorder traversal

— Postorder traversal

— Inorder traversal (binary trees only)
Expression and Syntax Trees 390

