
W

3/9/00
W-1

CSE 143

Trees

[Chapter 10]

3/9/00
W-2

Linear vs. Branching
• Our data structures so far are linear

– Have a beginning and an end

– Everything falls in order between the ends

– Arrays, linked lists, queues, stacks, priority queues, etc.

• Everyday life has branching structures, too.
– Family genealogy

– Biology: phylum/genus/species

– Company organization chart

– Table of contents

3/9/00
W-3

Board of Directors

CEO

Engineering Sales

Research Development

Foreign
Operations

Domestic
Sales

Manufacturing

Foreign
Sales

Overseas
Manufacturing 3/9/00

W-4

Branching Structures in CS
• Trees are a common branching structure in CS

• We’ve seen already:
– Class hierarchies

– Call graphs

– Recursive function traces

• PS: Some of these won’t quite be “trees” under
our official definition

3/9/00
W-5

A Tree

a

b

c g

fe h id

j

k

l

m

root

nodes (vertices)

leaves

edges

3/9/00
W-6

What’s in a Node?
• Answer: anything you want!

• Could have a tree of ints, tree of students, animals,
appointments, etc.
– All nodes will be of the same (base) type

• For simplicity, we often label the nodes with a
single letter or an integer

W

3/9/00
W-7

Formal Textbook Definition
• A general tree T is either empty, or is a set of

nodes such that T is partitioned into disjoint
subsets:
1. A subset with a single node r (called the root)

2. Subsets that are themselves general trees (these are
called the subtrees of T).

• Notes:
– This definition is recursive!

– The nodes are not defined. They can be anything, and
still satisfy the definition.

3/9/00
W-8

Tree Terminology
• Empty tree: tree with no nodes
• Child of a node u

– Any node reachable from u by 1 edge pointing
away from u

– Nodes can have zero, one, or more children

• Leaf: a node with no children
• If b is a child of a, then a is the parent of b

– All nodes except root have exactly one parent
– Root has no parent

3/9/00
W-9

Descendants
• Descendant of a node (recursive definition)

– 1. P is a descendant of P for any node P

– 2. If C is a child of P, and P is a descendant of A,
then C is a descendant of A

• Puzzle: neither rule states explicitly that if C
is a child of P, C is also a descendant of P.
Is it? Do we need another rule?

• Example:
– what are the descendents of j?

– Of what is l a descendant?

j

k

l

m

3/9/00
W-10

Ancestors
• Ancestor of a node

– Definition: If D is a descendant of A, then A is
an ancestor of D

• Example: j, k, and l are ancestors of l

j

k

l

m

3/9/00
W-11

Subtree Terminology
• Subtree

– Any node of a tree, with all of its descendants
– Puzzle: is b-c a subtree of the tree starting at a? Is it a tree?

a

b

c g

j

k m

3/9/00
W-12

Height and Level
• Level or depth (recursive definition)

– Level of root node is 1
– Level of any node other than

root is one greater than level
of its parent

• Height
– Height of a tree is maximum of all depths of its leaves
– Height of empty tree is defined to be 0

• Warning: Definitions vary
– Some textbooks define level of the root node as 0,

• so root node height would be 0, empty tree height would be -1

a

b

c g

j

k m

1

2

3

y

W

3/9/00
W-13

Binary Trees
• A binary tree is a tree each of whose nodes has

no more than two children
– The two children are called the left child and right

child
• The trees which start with these children are called the left

subtree and the right subtree

– See textbook for formal recursive definition

a

b

c f

e g hd

i

j

k

Left child Right child

3/9/00
W-14

Importance of Binary Trees
• Binary trees are widely used in Computer Science

• Much easier to represent (find a good data
structure for) than general trees

• Much easier to manipulate (write and implement
algorithms) than general trees

• Turns out that any general tree can be represented
using a binary tree.
– Won’t discuss in this course

3/9/00
W-15

Binary Tree as an ADT
• Textbook lists 18 operations!

– constructors and destructors

– bool isEmpty

– return/set root data

– attach left or right child nodes

– attach left or right subtrees

– detach left or right subtrees

– return a copy of left or right subtree

– traversals (more late)

3/9/00
W-16

Implementing A Binary Tree
• Using an array

– Efficient

– See textbook 452-453 for details
• won’t discuss further in this course

– Drawbacks: not flexible in terms of size; wastes space
if tree is unbalanced

• Using dynamic memory
– Similar to linked list implementation

– Two pointers, one each for left and right subtrees

– See textbook 455ff for details
• Will use in this course

3/9/00
W-17

Binary Tree Data Structure
• Binary tree node (for a tree of ints):

struct BTreeNode {
int item;
BTreeNode *left;
BTreeNode *right;

};

• Keep a root pointer to the root node
– Analogous to head pointer for a linked list
– Empty tree has a NULL root

• will usually omit NULL pointers when drawing pictures

• This example shows node for a tree of ints
– but “item” could be any type, even a class object

left right

item

root

3/9/00
W-18

Example: Counting Nodes
• Base case: Empty tree has zero nodes
• Recursive case: Nonempty tree has one node

(the root) plus nodes in left subtree plus nodes
in right subtree

int CountNodes(BTreeNode *root)

{
if (root == NULL)

return 0; // base case
else

return 1 + CountNodes(root->left)
+ CountNodes(root->right);

}

W

3/9/00
W-19

Binary Trees and Recursion
struct BTreeNode {
int item;
BTreeNode *left;
BTreeNode *right;

};

• Note the recursive data structure
• Algorithms often are recursive as well
• Don’t fight it! Recursion is going to be the natural

way to express the algorithms
– Challenge: code CountNodes without using recursion

3/9/00
W-20

Finding the Height
• Base case: Empty tree has height 0

• Recursive case: Nonempty tree has height 1 more
than maximum height of left and right subtrees

int Height(BTreeNode *root) {

if (root == NULL)
return 0;

else
return 1 + max(Height(root->left),

Height(root->right));
}

3/9/00
W-21

Analyses
• What is running time of these algorithms?

– Time to execute for one node: O(1)

– Number of recursive calls: O(N)
•N is the number of nodes in tree

• There’s no way to miss any node

• There’s no way to get to any node twice
– Each node is called from its parent, and a node has only

one parent

3/9/00
W-22

Exercises
Do try these at home!

• 1. Find the sum of all the values (items) in a
binary tree of integers

• 2. Find the smallest value in a B.T. of integers

• 3. (A little harder) Count the number of leaf nodes
in a B.T.

• 4. (A little harder) Find the average of all the
values in a B.T. (one approach: think in terms of a
“kickoff” function)

3/9/00
W-23

Recursive Tree Searching
• How to tell if a data item is in a binary tree?

bool find(BTreeNode *root, int item) {
if (root == NULL)

return false;
else if (root->data == item)
return true;

else
return (find(root->left, item) ||

find(root->right, item));
}

3/9/00
W-24

Complexity of Find
• What is the running time of this algorithm?

– Worst case: Has to visit every node in the tree, O(N)

• Can we do better?
– Answer: not without changing the data structure

– We will shortly look at a binary search tree
• Items will have an order, which will make searching more

efficient.

– But first we take up another topic: traversals.

W

3/9/00
W-25

Tree Traversal
• Functions to count nodes, find height, sum, etc.

systematically “visit” each node
• This is called a traversal

– We also used this word in connection with lists.

• Traversal is a common pattern in many
algorithms
– The processing done during the “visit” varies with the

algorithm

• What order should nodes be visited in?
– Many are possible
– Three have been singled out as particularly useful:

preorder, postorder, and inorder
3/9/00

W-26

Pre and Post Order Traversals
• Preorder traversal:

– “Visit” the (current) node first
• i.e., do what ever processing is to be done

– Then, (recursively) do preorder traversal on its
children, left to right

• Postorder traversal:
– First, (recursively) do postorder traversals of

children, left to right
– Visit the node itself last

• PS: These algorithms make sense for non-
binary trees, too.

3/9/00
W-27

Inorder
• Unlike pre- and post-, makes sense only for binary

trees

• Inorder traversal:
– (Recursively) do inorder traversal of left child

– Then visit the (current) node

– Then (recursively) do inorder traversal of right child

3/9/00
W-28

Example of Tree Traversal

9

5

2 7

4 6 81

12

10

l1

13

Preorder:

Inorder:

Postorder:

Assume this question: in
what order are the nodes
visited, if we start the
process at the root?

3/9/00
W-29

More Practice
What about this tree?

6

3

1 4

2 5

8

7

l3

10

11

12

Inorder:

Preorder:

Postorder:

3/9/00
W-30

Two Traversals for Printing
void

printInOrder(BTreeNode*
t) {

if (t != NULL) {

printInOrder(t->left);

cout << t->data << “ “;

printInOrder(t->right);

}

}

void
printPreOrder(BTreeNode*
t) {

if (t != NULL) {

cout << t->data << “ “;
printPreOrder(t->left);

printPreOrder(t->right);

}

}

W

3/9/00
W-31

Traversing to Delete
• Use a postorder traversal to return a whole tree to

the heap.

void deleteTree(BTreeNode* t) {

if (t != NULL) {

deleteTree(t->left);

deleteTree(t->right);

delete t;
}

}

• Would inorder or preorder work just as well??
3/9/00

W-32

Analysis of Tree Traversal
• How many recursive calls?

– Two for every node in tree (plus one initial
call);

– O(N) in total for N nodes

• How much time per call?
– Depends on complexity O(V) of the visit
– For printing and most other types of traversal,

visit is O(1)time

• Multiply to get total
– O(N)*O(V) = O(N*V)

• Does tree shape matter?

3/9/00
W-33

Sidebar: Syntax and Expression Trees

• Computer programs have a hierarchical
structure
– All statements have a fixed form

– Statements can be ordered and nested almost
arbitrarily (nested if-then-else)

• Can use a structure known as a syntax tree
to represent programs
– Trees capture hierarchical structure

3/9/00
W-34

A Syntax Tree
Consider the C++ statement:

if (a == b + 1) x = y; else ...

statement

expression statement statement

equality

LHS

var

a

expression

+var const

b 1

==

expression

=expression expression

var

x

var

y

...

()

;

if else

3/9/00
W-35

Syntax Trees
• Compilers usually use syntax trees when

compiling programs
– Can apply simple rules to check program for

syntax errors

– Easier for compiler to translate and optimize
than text file

• Process of building a syntax tree is called
parsing

3/9/00
W-36

Binary Expression Trees
• A binary expression tree is a syntax tree

used to represent meaning of a
mathematical expression
– Normal mathematical operators like +, -, *, /

• Structure of tree defines result

• Easy to evaluate expressions from their
binary expression tree

W

3/9/00
W-37

Example
5 * 3 + (9 - 1) / 4 - 1

5 3

*

9 1

- 4

/

+

-

1

3/9/00
W-38

Expression Magic

• Traverse in postorder for postfix notation!
5 3 * 9 1 - 4 / + 1 -

• Traverse in preorder for prefix notation
- + * 5 3 / - 9 1 4 1

• Traverse in inorder for infix notation
5 * 3 + 9 - 1 / 4 - 1

– Note that operator precedence may be wrong!
Correction: add parentheses at every step

(((5*3) + ((9 - 1) / 4)) - 1)

3/9/00
W-39

Trees Summary
• Tree as new hierarchical ADT

– Recursive definition and recursive data
structure

• Tree terminology
– Nodes; Root node, leaf nodes

– Children, parents, ancestors, descendants

– Depth of node, height of tree

– Subtrees

3/9/00
W-40

Trees Summary (2)
• Binary Trees

– Either 0, 1, or 2 children at any node
– Recursive functions to manipulate them

• Binary Tree Implementation
– Via node with two pointers

• Tree Traversals
– Preorder traversal

– Postorder traversal

– Inorder traversal (binary trees only)

• Expression and Syntax Trees

