CSE 143

Searching and Sorting

[Chapter 9, pp. 402-432]

Review: Linear Search

Given an array A of \mathbf{N} ints, search for an element \mathbf{x}.
// Return index of x if found, or -1 if not
int Find (int $A[]$, int N, int x)
\{
for (int $i=0 ; i<N ; i++)$
if ($A[i]==\mathbf{x}$)
return i;
$\}^{\text {return -1; }}$
\}

Review: Binary Search

- If array is sorted, we can search faster

Start search in middle of array
If \mathbf{x} is less than middle element, search (recursively) in lower half
If x is greater than middle element, search (recursively) in upper half
Why is this faster than linear search?
At each step, linear search throws out one element - Binary search throws out half of remaining elements

Two important problems

Search: finding something in a set of data
Sorting: putting a set of data in order

- Both very common, very useful operations

Both can be done more efficiently after some thought
Both have been studied intensively by computer scientists

How Efficient Is Linear Search?

```
// Return index of x if found, or -1 if not
int Find (int A[], int N, int x)
    for ( int i = 0; i< N; i++ )
        if ( }\textrm{A}[i]==x
    return -1;
}
-Problem size: N
-Best case (x is A [0]): O(1)
-Worst case (x not present): O(N)
Average case (x in middle): O(N/2) = O(N)
    -Challenge for math majors: prove this!
```


Example

Find 26 in the following sorted array:

1	3	4	7	9	11	15	19	22	24	26	31	35

Binary Search (Recursive)

```
int find(int A[], int size, int x) {
    return findInRange(A, x, 0, size-1);
}
int findInRange(int A[], int x, int lo, int hi) {
        if (lo > hi) return -1;
        int mid = (lo+hi) / 2;
        if (x == A [mid])
        return mid;
        else if (x < A[mid])
            return findInRange(A, x, low, mid-1)
        else
            return findInRange(A, x, mid+1, hi);
}
```


Binary Search Sizes

Analysis (recursive)

- Time per recursive call of binary search is 0 (1)

How many recursive calls?

- Each call discards at least half of the remaining input.
- Recursion ends when input size is 0
- How many times can we divide N in half? $1+\log _{2} \mathrm{~N}$

With o(1) time per call and $O(\log N)$ calls, total is $O(1) * O(\log N)=O(\log N)$

Doubling size of input only adds a single recursive call
Very fast for large arrays, especially compared to 0 (\mathbf{N}) linear search

Sorting

- Binary search requires a sorted input array But how did the array get sorted?
- Many other applications need sorted input array
- Language dictionaries
- Telephone books
- Printing data in organized fashion

Web search engine results, for example
Spreadsheets

- Data sets may be very large

Sorting Algorithms

Many different sorting algorithms, with many different characteristics

- Some work better on small vs. large inputs
- Some preserve relative ordering of "equal" elements (stable sorts)
- Some need extra memory, some are in-place
- Some designed to exploit data locality (not jump around in memory/disk)
Which ones are best?
- Try to answer using efficiency analysis

3/1/00 V-11

Sorts You May Know

- 142 review

Bubble Sort
Some think it's a good "intro" sort
I think it's too complicated -- and slow beside
Selection Sort
will study and analyze now

- Insertion Sort

A lot like Selection Sort
Mergesort
Quicksort
Radixsort

Selection Sort

Simple -- what you might do by hand
Idea: Make repeated passes through the array, picking the smallest, then second smallest, etc., and move each to the front of the array
void selectionSort (int A[], int N) \{
for (int lo=0; lo<N-1; lo++) \{
int $\mathbf{k}=$ indexOfSmallest($\mathrm{A}, \mathrm{lo}, \mathrm{N}-1$);
swap(A[lo], A[k]);
\}
\}

Analysis of IndexOfSmallest

Finding the smallest element:

```
    int indexOfSmallest(int A [ ], int lo, int hi) {
        int smallIndex = lo;
        for (int i=lo+1; i<=hi; i++)
            if (A[i] < A[smallIndex])
                smallIndex = i;
        return smallIndex;
    }
```

How much work does indexOfSmallest do?

Shortcut Analysis

-Go through outer loop about N times
Each time, the amount of work done is no worse than about $\mathrm{N}+\mathrm{c}$
So overall, we do about $\mathrm{N}^{\star}(\mathrm{N}+\mathrm{c})$ steps, or $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Is $\mathrm{O}\left(\mathrm{N}^{2}\right)$ the Whole Story?

Asymptotic average case complexity is not always the whole story
Examples:

- Bubble Sort is usually slowest in practice because it does lots of swaps
- Insertion Sort is almost $\mathrm{O}(\mathrm{N})$ if the array is "almost" sorted already
If you know something about the data for a particular application, you may be able to tailor the algorithm
At the end of the day, still $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Can We Sort Faster Than O(N2)?

Why was binary search so good?
Answer: at each stage, we divided the problem in two parts, each only half as big as the original
-With Selection Sort, at each stage the new problem was only 1 smaller than the original

- Same was true of the other quadratic sort algorithms
-How could we treat sorting like we do searching?
- I.e., somehow making the problem much smaller at each stage instead of just a little smaller

Use Recursion!

-Base case
-an array of size 1 is already sorted!

- Recursive case
- split array in half
- use a recursive call to sort each half - combine the sorted halves into a sorted array
- Two ways to do the splitting/combining - mergesort quicksort

Where are we on the chart?

N	$\log _{2} \mathrm{~N}$	5 N	$\mathrm{N} \log _{2} \mathrm{~N}$	N^{2}	$2^{\text {N }}$
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~ 109
64	6	320	384	4096	~ 1019
128	7	640	896	16384	$\sim 10^{38}$
256	8	1280	2048	65536	$\sim 10^{76}$
10000	13	50000	10^{5}	10^{8}	$\sim 10^{3010}$

An Approach

- Try a "Divide and Conquer" approach

Divide the array into two parts, in some sensible way

- Hopefully doing this dividing up can be done efficiently
- Arrange it so we can

1. sort the two halves separately

This would give us the "much smaller" property
2. recombine the two halves easily

This would keep the amount of work reasonable

Quicksort

- Discovered by Anthony Hoare (1962)
-Split in half ("Partition")
- Pick an element midval of array (the pivot)
- Partition array into two portions, so that 1. all elements less than or equal to midval are left of it, and

2. all elements those greater than midval are right of it
-(Recursively) sort each of those 2 portions

- Combining halves
- already in order!

Partitioning Example

- Before partition:
$\begin{array}{lllllllll}5 & 10 & 3 & 0 & 12 & 15 & 2 & -4 & 8\end{array}$
Suppose we choose 5 as the "pivot"
After the partition:
What values are to the left of the pivot?
What values are to the right of the pivot?
What about the exact order of the partitioned array? Does it matter?
Is the array now sorted? Is it "closer" to being sorted?
What is the next step

Quicksort

```
// sort A[0..N-1]
void quicksort(int A[], int N) {
    qsort(A, 0, N-1);
}
// sort A[lo..hi]
void qsort(int A[], int lo, int hi) {
    if ( lo >= hi ) return;
    int mid = partition(A, lo, hi);
    qsort(A, lo, mid-1);
        qsort(A, mid+1, hi);
}
```


A Partition Implementation

- Use first element of array section as the pivot - Invariant:
- Simple implementation: pivot on first element of array

At the end, have to return new index of midval

- We don't know in advance where it will end up!

Have to rearrange A[lo] . . A [hi] so elements \leq midval are left of midval, and the rest are right of midval

This is tricky code
See the textbook for details of one implementation

Partition

```
// Partition A[lo..hi]; return location of pivot
// Precondition: lo < hi
int partition(int A[],int lo,int hi){
    assert(lo < hi);
    int L = lo+1, R = hi;
    while (L <= R) {
        if (A[L] <= A[lo]) L++;
        else if (A[R] > A[lo]) R--;
        else { // A[L] > pivot && A[R] <= pivot
            swap(A[L],A[R]);
                L++; R--;
        }}
    // put pivot element in middle & return location
    swap(A[lo],A[L-1]);
    return L-1;
}

For simplicity, handle only one case per iteration
- This can be tuned to be more efficient,

\section*{Partition Helper Function}

Partition will have to choose a pivot (midval)
\begin{tabular}{c|c|l|ll} 
& \multicolumn{1}{l}{} & \multicolumn{1}{l}{ Lo } & \multicolumn{1}{c}{ R } & hi \\
A \begin{tabular}{|c|c|c|c|}
\hline \\
x & \(<=\mathrm{x}\) & unprocessed & \(>\mathrm{x}\) \\
pivot
\end{tabular} & \\
\hline
\end{tabular}
\[
\text { but not needed for our purposes. }{ }_{3 / 1 / 00} \text { v-28 }
\]

\section*{Example of Quicksort}
\begin{tabular}{llllllll}
6 & 4 & 2 & 9 & 5 & 8 & 1 & 7
\end{tabular}

\section*{Complexity of Quicksort}

Each call to Quicksort (ignoring recursive calls): One call to partition \(=O(n)\), where \(n\) is size of part of array being sorted Note: This n is smaller than the N of the original problem
Some O (1) work
Total \(=O(n)\) for \(n\) the size of array part being sorted
Including recursive calls:
- Two recursive calls at each level of recursion, each partitions "half" the array at a cost of \(O(N / 2)\)
-How many levels of recursion?

\section*{Best Case for Quicksort}

Assume partition will split array exactly in half
Depth of recursion is then \(\log _{2} \mathbf{N}\)
- Total work is \(O(N) * O(\log N)=O(N \log N)\), much better than \(0\left(\mathrm{~N}^{2}\right)\) for selection sort
Example: Sorting 10,000 items:
-Selection sort: 10,000 \({ }^{2}=100,000,000\)
-Quicksort: 10,000 \(\log _{2} 10,000 \approx 132,877\)

\section*{Worst Case for Quicksort}

If we're very unlucky, then each pass through partition removes only a single element.


In this case, we have N levels of recursion rather than \(\log _{2} \mathrm{~N}\). What's the total complexity?

\section*{Average Case for Quicksort}

How to perform average-case analysis?
- Assume data values are in random order

What probability that A [lo] is the least element in A?
- If data is random, it is \(1 / \mathrm{N}\)

Expected time turns out to be
\(\mathrm{O}(\mathrm{N} \log \mathrm{N})\), like best case

Back to Worst Case
- Can we do better than \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) ?
-Depends on how we pick the pivot element midval
- Lots of tricks have been tried

One such trick:
opick midval randomly among A [lo], A[lo+1], ..., A[hi-1], A[hi]
- Expected time turns out to be
\(\mathrm{O}(\mathrm{N} \log \mathrm{N})\), independent of input

\section*{Mergesort}
- Split in half
- just take the first half and the second half of the array, without rearranging
sort the halves separately
Combining the sorted halves ("merge")
repeatedly pick the least element from each array
compare, and put the smaller in the resulting array
example: if the two arrays are
\(\begin{array}{lllll}1 & 12 & 15 & 20 & \\ 5 & 6 & 13 & 21 & 30\end{array}\)
The "merged" array is \(\begin{array}{lllllllll}1 & 5 & 6 & 12 & 13 & 15 & 20 & 21 & 30\end{array}\) note: we will need a temporary result array

\section*{Merge Code}
void merge(int \(A[], ~ i n t ~ l o, ~ i n t ~ m i d, ~ i n t ~ h i) ~\{~\)
int fir \(=10\); int \(\sec =\operatorname{mid}+1\);
int tempArray [MAX_SIZE];
for (int \(i=0 ; i<h i-l o ;++i)\) \{
if (sec == hi+1 || A[fir] < A[sec])
tempArray[i] = A[fir++];
else
tempArray[i] = A[sec++];
for (int \(i=0 ; i<h i-l o ;++i)\{\) A[lo + i] = tempArray[i];
\}

\section*{Mergesort Code}
void mergesort (int A[], int \(N\) ) \{
mergesort_help (A, 0, N-1);
\}
void mergesort_help(int A[],int lo,int hi) \{ if (lo - hi > 1) \{ int mid = (lo + hi) / 2; mergesort_help(A, lo, mid); mergesort_help(A, mid + 1, hi); merge(A, lo, mid, hi) \}
\}

\section*{Mergesort Example}
\begin{tabular}{llllllll}
8 & 4 & 2 & 9 & 5 & 6 & 1 & 7
\end{tabular}

\section*{Mergesort Complexity}
- Time complexity of merge ()\(=\mathrm{O}\) ( \(\qquad\) -)
N is size of the part of the array being sorted
Recursive calls:
- Two recursive calls at each level of recursion, each does "half" the array at a cost of \(\mathrm{O}(\mathrm{N} / 2)\)
How many levels of recursion?

Mergesort Recursion


\section*{Mergesort Space Complexity}
-Mergesort needs a temporary array at each call
- Total temp. space is \(N\) at each level

Space complexity of \(\mathrm{O}\left(\mathrm{N}^{*} \log \mathrm{~N}\right)\)
Compare with Quicksort, Selection Sort,etc:
- None of them required a temp array
-All were "in-place" sorts: space complexity O(N)

\section*{"Bucket Sort:" Even Faster Sorting}

Sort n integers from the range 1..m
1. Use temporary array T of size m initialized to some sentinel value
2. If \(v\) occurs in the data, "mark" T[v]
3. Make pass over T to "condense" the values

Run time \(O(n+m)\)
-Example ( \(\mathrm{n}=5, \mathrm{~m}=11\) )
Data: \(9,3,8,1,6\)


\section*{Guaranteed Fast Sorting}

There are other sorting algorithms which are always \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\), even in worst case - Examples: Mergesort, Balanced Binary Search Trees, Heapsort

Why not always use something other than Quicksort?
- Others may be hard to implement, may require extra memory
Hidden constants: a well-written quicksort will nearly always beat other algorithms

\section*{Reasons Not to Always Use Bucket Sort}
- Integers might be from a large range
- Social Security Numbers: requires an array T[999999999] no matter how few data points
Large arrays will either be disallowed by the compiler, or written to disk (causing extreme slowdown)
- You may not know m in advance
- Might be no reasonable sentinel value
- If any positive or negative integer is possible

Sort key might not be an integer
Salary, date, name, etc.

\section*{Radix Sort: Another Fast Sort}
- Imagine you only had to sort numbers from 0 to 9
- First, figure out how many of each number
-array: \(\begin{array}{llllllll}6 & 2 & 7 & 9 & 7\end{array}\)

Next, calculate starting index for each number - indices? \(0 \quad 1 \quad 2 \begin{array}{llllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)

Last, put numbers into correct position

-Run time O(n)
So far, this is identical to bucket sort... 3/100 v-47

\section*{Larger numbers}
-What about 2 and 3-digit numbers?
- Sort low digits first, then high digits - original: 45923360295514
- first pass:
- final pass:
-Complexity
\# of passes? work per pass? overall?
- Problems
- You may not know \# of digits in advance
- Sort key might not be an integer

Salary, date, name, etc.

\section*{Summary}
- Searching
- Linear Search: 0 (N)
-Binary Search: O (log N\()\), needs sorted data
- Sorting
-Selection Sort: O ( \(\mathrm{N}^{2}\) )
Other quadratic sorts: Insertion, Bubble
-Mergesort: O ( \(\mathrm{N} \log \mathrm{N}\) )
Quicksort: average: O ( \(\mathrm{N} \log \mathrm{N}\) ), worst-case: \(\mathrm{O}\left(\mathrm{N}^{2}\right)\)
-Bucketsort: \(\mathrm{O}(\mathrm{N})\) [but what about space??]
Radixsort: O(N * D)```

