## CSE 143

## Program Efficiency

[Chapter 9, pp. 390-401]

## Fast code

C/C++ language/culture encourages tricky coding, often in the name of "efficiency"

```
while (*q++ = *p++)
```

Reasons for caution
Correctness
Code used by others
No need to do compiler's job
$90 / 10$ principle (some would say 80/20)

## Complexity Analysis

## Example For Analysis

```
// Input: int A[N], array of N integers
```

// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
// Output: Sum of all numbers in array A
int Sum(int A[], int N) {
int Sum(int A[], int N) {
int sum = 0;
int sum = 0;
for ( int j = 0; j < N; j++ )
for ( int j = 0; j < N; j++ )
sum = sum + A [j];
sum = sum + A [j];
return sum;
return sum;
}
}
How should we analyze this?

```
How should we analyze this?
```


## Analysis of Sum

First, describe the size of the input in terms of one or more parameters
Input to Sum is an array of $N$ ints, so size is $N$.
Then, count how many steps are used for an input of that size

- A step is an elementary operation such as + or < or A [j]


## How 5N+3 Grows

The $5 N+3$ analysis gives an estimate of the true running time for different values of N :
$N=10 \Rightarrow 53$ steps
$N=100=>503$ steps
$N=1,000=>5,003$ steps
$N=1,000,000=>5,000,003$ steps

- As N grows, the number of steps grows in linear proportion to N , for this Sum function


## Why is this Useful?

What happens when we double the input size N ?

| N | $\log _{2} \mathrm{~N}$ | 5N | $\mathrm{N} \log _{2} \mathrm{~N}$ | $\mathrm{N}^{2}$ | $2^{\text {N }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 8 | 3 | 40 | 24 | 64 | 256 |
| 16 | 4 | 80 | 64 | 256 | 65536 |
| 32 | 5 | 160 | 160 | 1024 | $\sim 10^{9}$ |
| 64 | 6 | 320 | 384 | 4096 | ~1019 |
| 128 | 7 | 640 | 896 | 16384 | $\sim 10^{38}$ |
| 256 | 8 | 1280 | 2048 | 65536 | $\sim 10^{76}$ |
| 10000 | 13 | 50000 | $10^{5}$ | $10^{8}$ | $\underset{2 / 27 / 00}{10^{3010}}$ |

## Methodology

- The example was typical

Analyze a program by counting steps
Derive a formula, based in some parameter N that is the size of the problem

- For example, one algorithm might have a formula of $\mathrm{N}^{2}$ - Another might be $2^{\mathrm{N}}$

Look at the formula to understand the overall efficiency

## Isn't This Totally Bogus?

- Need to run faster? Buy a faster computer!

Or just wait a while: CPU speed doubles every 18 months or so
-"Moore's Law"
-Suppose we could make the CPU $1,000,000$
times faster -- how much would that help?
Suppose the algorithm has complexity $2^{N}$ ?

- See following chart


## If We Sped Up the CPU...

Even speeding up by a factor of a million, $10^{3010}$ is only reduced to $10^{3004}$

| 8 | 3 | 40 | 24 | 64 | 256 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 16 | 4 | 80 | 64 | 256 | 65536 |
| 32 | 5 | 160 | 160 | 1024 | $\sim 10^{9}$ |
| 64 | 6 | 320 | 384 | 4096 | $\sim 10^{19}$ |
| 128 | 7 | 640 | 896 | 16384 | $\sim 10^{38}$ |
| 256 | 8 | 1280 | 2048 | 65536 | $\sim 10^{76}$ |
| 10000 | 13 | 50000 | $10^{5}$ | $10^{8}$ | $\sim 10^{3010}$ |

## What Dominates?

What about the 5 in $5 \mathrm{~N}+3$ ? What about the +3 ?
As N gets large, the +3 becomes insignificant
The 5 is inaccurate:
<, [], +, =, ++ require varying amounts of time; different computers by and large differ by a constant factor
What is fundamental is that the time is linear in N

Asymptotic Complexity: As n gets large, concentrate on the highest order term

- Drop lower order terms such as +3

Drop the constant coefficient of the highest order term

## Big numbers

Suppose a program has run time proportional to n!
Suppose the run time for $\mathrm{n}=10$ is 1 second Do the math:

For $\mathrm{n}=12$, the run time is $2+$ minutes
The time for 12 is $12!=10!\times 11 \times 12$ which is 132 times longer that 1 second: 132 seconds

For $n=14$, the run time is 6 hours
$11 \times 12 \times 13 \times 14$ times longer
For $n=16$, the run time is 2 months
For $n=18$, the run time is 50 years
For $n=20$, the run time is 200 centuries

## Asymptotic Complexity

The $5 \mathrm{~N}+3$ time bound is said to "grow asymptotically" like N

This gives us an approximation of the complexity of the algorithm Ignores lots of details, concentrates on the bigger picture

## Comparing Algorithms

We can now (partially) answer the question, "Given algorithms A and B, which is more efficient?'
Same as asking "Which algorithm has the smaller asymptotic time bound?"
For specific values of N , we might get different (and uninformative) answers
Instead, compare the growth rates for arbitrarily large values of N (the asymptotic case)

## Comparing Functions

Definition: If $f(N)$ and $g(N)$ are two complexity functions, we say

$$
\mathrm{f}(\mathrm{~N})=\mathrm{O}(\mathrm{~g}(\mathrm{~N}))
$$

(read "f $(N)$ is order $g(N)$ ", or " $f(N)$ is big-O of $g(N)$ ")
if there is a constant c such that

$$
\mathrm{f}(\mathrm{~N})<\mathrm{Cg}(\mathrm{~N})
$$

for all sufficiently large N .

## Big-O Notation

-Think of $f(N)=O(g(N))$ as
" $f(\mathbb{N})$ grows at most like $g(N)$ " or
"f grows no faster than g"
(ignoring constant factors, and for large N )

- Big-O is not a function!
-Never read = as "equals"!
- Examples:
- $5 \mathrm{~N}+3=\mathrm{O}(\mathrm{N})$ also true: $5 \mathrm{~N}+3=\mathrm{O}\left(\mathrm{N}^{2}\right)$


## Computer Science Footnote

There's a whole big theory of algorithmic complexity

- Typical questions:
- What is the worst case performance (upper bound) of a particular algorithm?
- What is the average case performance of a particula algorithm?
- What is the best possible performance (lower bound) for a particular type of problem?
Many difficult questions
- Complicated mathematics

Still many unsolved problems!

## Why is this Useful? (2)

As inputs get larger, any algorithm of a smaller order will be more efficient than an algorithm of a

## Common Orders of Growth

Let N be the input size

| $O(k)=O(1)$ | Constant Time |
| :--- | :--- |
| $O\left(\log _{b} N\right)=O(\log N)$ | Logarithmic Time |
| $O(N)$ | Linear Time |
| $O(N \log N)$ | Quadratic Time |
| $O\left(N^{2}\right)$ | Cubic Time |
| $O\left(N^{3}\right)$ |  |
| $\cdots\left(k^{N}\right)$ | Exponential Time |

Nanyinteger is called "polynomial" time
Rule of thumb: if it ain't polynomial, it ain't practical
larger order


## Big-O Arithmetic

- Remember common functions in order from smallest to largest:
$1, \log (N), N, N \log (N), N^{2}, N^{3}, \ldots$,
$2^{\mathrm{N}}, 3^{\mathrm{N}}, \ldots$
- Ignore constant multipliers $300 \mathrm{~N}+5 \mathrm{~N}^{4}+6 \cdot 2^{\mathrm{N}}=\mathrm{O}\left(\mathrm{N}+\mathrm{N}^{4}+2^{\mathrm{N}}\right)$
- Ignore everything except the highest order term

$$
\mathrm{N}+\mathrm{N}^{4}+2^{\mathrm{N}}=\mathrm{O}\left(2^{\mathrm{N}}\right)
$$

## Constant Time Statements

Simplest case: o(1) time statements

- Assignment statements of simple data types int $x=y$;
Arithmetic operations
$\mathrm{x}=5$ * $\mathrm{y}+4 * \mathrm{z}$;
- Array referencing
$A^{[j]}$
- Referencing/dereferencing pointers Cursor = Head $\rightarrow$ Next;
- Declarations of simple data types int x, y;
- Most conditional tests if ( $\mathrm{x}<12$ )


## Constant Time Statements (2)

Watch out for things that look like simple o(1) time operations, but are actually more complex:

- Overloaded operators

LinkedList L1 (L2); // deep copy?
Set $\mathrm{s} 1=\mathrm{s} 2+\mathrm{s} 3 ; / /+$ for set union?

- Declaring complex data types that have constructors
- Function invocations
if ( aPriorityQueue.Size() < 10 ) ...


## Analyzing Loops

Any loop analysis has two parts:

1. How many iterations are performed?
2. How many steps per iteration?
```
int sum = 0;
for (int j = 0; j < N; j++ )
            sum = sum + j;
    -Loop executes N times (0 . . N-1)
    - 4 = O(1) steps per iteration
    - Total time is N}N\cdotO(1)=O(N\cdot1)=O(N
```

                                    2/27/00 U-26
    
## Analyzing Loops (3)

What about while-loops?

- Determine how many times the loop will be executed
bool done $=$ false;
int result $=1, \mathrm{n}$;
int resul
while (!done) \{
result $=$ result * $n$;
n--;
if ( $\mathrm{n}<=1$ ) done = true;
\}
- Loop terminates when done == true, which
happens after $n$ iterations
- (1) time per iteration
- O (n) total time


## Nested Loops

-Treat just like a single loop, and evaluate each
Nested Loops (2)
level of nesting as needed:
int j, k, sum $=0$;
for ( $j=0 ; j<N ; j++$ )
for $(k=N ; k>0 ; k--)$ sum $+=k+j ;$

- Start with outer loop:

How many iterations? N

- How much time per iteration? Need to evaluate inner loop...
- Inner loop uses $\mathrm{O}(\mathrm{N})$ time
- Total is $\mathrm{N} \cdot \mathrm{O}(\mathrm{N})=\mathrm{O}(\mathrm{N} \cdot \mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- What if the number of iterations of one loop depends on the counter of the other?

```
int j, k, sum = 0;
for ( j = 0; j < N; j++ )
    for (k = 0; k< j; k++)
        sum += k * j;
```

- Analyze inner and outer loops together
- Number of iterations of the inner loop is
$0+1+2+\ldots+(N-1)=O\left(N^{2}\right)$
- Time per iteration is $\mathrm{O}(1)$, for total $\circ\left(\mathrm{N}^{2}\right)$


## Sequences of Statements

For a sequence of statements, compute their cost functions individually and add them up

```
for (int j = 0; j < N; j++)
    for (int k = 0; k < j; k++)
        sum = sum + j*k;
for (int l = 0; l < N; l++) ] O(N)
cout << "Sum is now " << sum << endl;] O(1)
```



## "Worst-Case" vs "Average-Case"

if (condition) statement1;
else statement2
If you knew how often the condition is true, you could compute a weighted average.

- Extreme case: the conditional might be always true or never true
- "Average case" analysis can be very difficult
- Use tools from probability and statistics

For many algorithms, it is useful to know both the

## Conditional Statements

What about a conditional statement such as

```
if (condition) statement1;
```

else statement2;
where statement 1 runs in $O(n)$ time and statement 2 runs in $O\left(n^{2}\right)$ time?
-We use "worst-case complexity": among all inputs of size n , what is the maximum running time?

- The analysis for the example above is $\mathrm{O}\left(\mathrm{n}^{2}\right)$.


## Cost of Function Calls

$F(b, c)$;

- Cost = cost of making the call + cost of passing
the arguments + cost of executing the function
- Making and returning from the call: $\mathrm{O}(1)$

Passing the arguments: depends on how they are passed

- Cost of execution: must do analysis of the function itself
worst case and the average case complexity


## Efficiency in Parameter Passing

Pass by value -- copies entire structure

- Page::Translate(CodeBook cb);
- What if there's a copy constructor?

Pass by reference -- does not copy, but allows updates

- Page::Translate(CodeBook\& cb);
- Page::Translate(CodeBook * cb);
const reference -- pass by reference, but do not allow changes
- Page::Translate(const CodeBook\& cb);
- Which technique should you use??


## Recursive Algorithms

- We need to know two things:
- number of recursive calls
- the work done at each level of recursion

Example: exponentiation
int $\exp$ (int $x$, int $n$ ) \{
if ( $\mathrm{n}==0$ )
return 1;
else
return x * $\exp (\mathrm{x}, \mathrm{n}-1)$;
\}

- The running time is $O(n)$, because there are $n$ recursive calls, and the work done at each call is constant


## Recursive Algorithms (2)

Fibonacci numbers:
int fib (int n) \{
if ( $\mathrm{n}==1| | \mathrm{n}==2$ ) return 1;
else
return $\mathrm{fib}(\mathrm{n}-1)+\mathrm{fib}(\mathrm{n}-2)$;
\}
How many calls?
How much work at each call?
Running time?

- In general, a "recurrence relation" results from the analysis, solvable with tools from math. ${ }^{2 / 27 / 00} \quad{ }^{\text {U }} 37$


## List Implementations

$N$ is the list size

| array | linked list | doubly <br> linked list |
| :--- | :--- | :--- |
| Constructor   <br> isEmpty   <br> isFull   <br> reset   <br> advance   <br> endoflist   <br> data   <br> size   <br> insertBefore   <br> insertAfter   <br> deleteItem  $\quad$. |  |  |

## List Implementations

$N$ is the list size

| array | linked list | doubly <br> linked list |
| :---: | :---: | :---: |
| $O(1)$ | $O(1)$ | $O(1)$ |
| $O(1)$ | $O(N)$ | $O(N)$ |
| $O(N)$ | $O(N)$ | $O(1)$ |
| $O(N)$ | $O(1)$ | $O(1)$ |
| $O(N)$ | $O(N)$ | $O(1)$ |

## Dynamic arrays

When array is full, reallocate new array

- increase by one
if (size == maxSize) $\{$
int *tmp = new int [maxSize + 1];
\}
- double array
if (size == maxSize) $\{$
int *tmp $=$ new int [ $2 *$ maxSize ;
\}
-What is the cost of
vector a;
for (int $i=0 ; i<N ; i++$ )
a.insert(i, i);

2/27/00 U-40

## Printing a list in reverse order <br> - Iterative <br> L. GoToEndofList() ; <br> while (! L.StartOfList())\{ <br> L. Previous(); <br> cout << L.Data(); <br> \} <br> - $\mathrm{O}\left(\mathrm{N}^{2}\right)$ since Previous is $\mathrm{O}(\mathrm{N})$ <br> Recursive <br> void List::RevPrint() \{ <br> if (EndofList()) return; <br> int $d=$ Data() ; Advance(); RevPrint(); cout $\ll d$; <br> \} <br> - $\mathrm{O}(\mathrm{N}), \mathrm{N}$ recursive calls at $\mathrm{O}(1)$ each <br> 2/27/00 U-42



## Summary

- Measuring Efficiency
- Measure as a function of input size N

Use steps of time or units of memory for measurements
-Asymptotic complexity

- Growth rate as N gets large

Order of common complexity functions
Big-O notation

- Methods for analyzing programs


## Review: Common Orders of Growth

## Memorize!

| $\mathrm{O}(\mathrm{k})=0(1)$ | Constant Time |  |
| :---: | :---: | :---: |
| $O\left(\log _{b} \mathrm{~N}\right)=O(\log \mathrm{~N})$ | Logarithmic Time |  |
| O (N) | Linear Time |  |
| $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ |  | ${ }^{0}$ |
| $\mathrm{O}\left(\mathrm{N}^{2}\right)$ | Quadratic Time |  |
| $\mathrm{O}\left(\mathrm{N}^{3}\right)$ | Cubic Time |  |
| $\cdots\left(\mathrm{k}^{\mathrm{N}}\right)$ | Exponential Time |  |

Nanyinteger is called "polynomial" time Rule of thumb: if it ain't polynomial, it ain't practical

## Efficiency Debate

int max = values[0];
for (int i=0; $\mathrm{i}<$ vsize; $\mathrm{i}++$ )
if (max <= values[i]) max = values[i];
OR
int max = values[0];
for (int i=1; $\mathrm{i}<$ vsize; $\mathrm{i}++$ )
if (max < values[i]) max = values[i];
Which version is correct?
Which version is more efficient?
Does it matter??

