CSE 143

Program Efficiency

[Chapter 9, pp. 390-401]

2/27/00 U-1

Does it matter?

- Yes! Faster is better
- · Assuming correctness, etc.
- Considerations other than speed
- Development time
- · Ease of maintenance
- Extensibility
- Approaches to improving performance
- •Tighter code
- Better algorithm
- · Better data structure

2/27/00

Fast code

 C/C++ language/culture encourages tricky coding, often in the name of "efficiency"

```
while (*q++ = *p++);
```

- Reasons for caution
 - Correctness
 - Code used by others
 - No need to do compiler's job
 - 90/10 principle (some would say 80/20)

^{2/27/00} U-3

Measuring Efficiency

- •Usually means "time" (to run) or "space" (memory
- One way of measuring efficiency is to run the program

```
see how long it takes
see how much memory it uses
```

- Lots of variability when running the program
- •What input data?
- ·What hardware platform?
- What compiler? What compiler options?
- Just because one program runs faster than another right now, will it always be faster?2/27/00 U-4

Complexity Analysis

- Lots of little details that we'll avoid, to achieve platform-independence
- Use an abstract machine that uses steps of time and *units* of memory, instead of seconds or bytes
- Each elementary operation takes 1 step
- · Each elementary instance occupies 1 unit of
- Measure time and space in terms of the size of the input rather than details of the specific
- Allows us to focus on big issues

U-5

Example For Analysis

```
// Input: int A[N], array of N integers
// Output: Sum of all numbers in array A
int Sum(int A[], int N) {
  int sum = 0;
  for ( int j = 0; j < N; j++ )
    sum = sum + A[j];
  return sum;
How should we analyze this?
```

CSE 143 U

Analysis of Sum

- First, describe the size of the input in terms of one or more parameters
- Input to Sum is an array of N ints, so size is N.
- Then, count how many steps are used for an input of that size
 - \bullet A step is an elementary operation such as + or < or A [$\dot{\ \ }$]

2/27/00 U-7

Analysis of Sum (2)

How 5N+3 Grows

•The 5N+3 analysis gives an estimate of the true running time for different values of N:

N = 10 = 53 steps

N = 100 = 503 steps

N = 1,000 => 5,003 steps

 $N = 1,000,000 \Rightarrow 5,000,003 \text{ steps}$

•As N grows, the number of steps grows in *linear* proportion to N, for this Sum function

2/27/00 U-9

Methodology

- The example was typical
- Analyze a program by counting steps
- Derive a formula, based in some parameter N that is the size of the problem
- ${}_{^{\bullet}}\text{For example, one algorithm might have a formula of }{}^{\text{N}^{2}}$
- Another might be 2N
- Look at the formula to understand the overall efficiency

^{2/27/00} U-10

Why is this Useful?

What happens when we double the input size N?

N	log ₂ N	5N	${\rm N} \; \log_2 \! N$	N^2	$2^{\rm N}$	
8	3	40	24	64	256	
16	4	80	64	256	65536	
32	5	160	160	1024	~109	
64	6	320	384	4096	~1019	
128	7	640	896	16384	~1038	
256	8	1280	2048	65536	~1076	
10000	13	50000	105	108	~10 ³⁰¹⁰ 2/27/00	U-11

Isn't This Totally Bogus?

- •Need to run faster? Buy a faster computer!
- Or just wait a while: CPU speed doubles every 18 months or so
- "Moore's Law
- •Suppose we could make the CPU 1,000,000 times faster -- how much would that help?
 - Suppose the algorithm has complexity 2^N?
 - See following chart

2/27/00 U-12

If We Sped Up the CPU...

Even speeding up by a factor of a million, 10³⁰¹⁰ is only reduced to 10³⁰⁰⁴

IS OII.	ry rec	iuceu co	10			
N	log_2N	5N	${\rm N} \; \log_2 \! N$	\mathbb{N}^2	2 ^N	
						=
8	3	40	24	64	256	
16	4	80	64	256	65536	
32	5	160	160	1024	~109	
64	6	320	384	4096	~1019	
128	7	640	896	16384	~1038	
256	8	1280	2048	65536	~1076	
10000	13	50000	105	108	~103010	
					2/27/00	U-13

Big numbers

- Suppose a program has run time proportional to
- Suppose the run time for n = 10 is 1 second
- Do the math:
- For n = 12, the run time is 2+ minutes

 The time for 12 is 12! = 10! x 11 x 12 which is 132 times longer that 1 second: 132 seconds
- For n = 14, the run time is 6 hours

11 x 12 x 13 x 14 times longer

- For n = 16, the run time is 2 months
- For n = 18, the run time is 50 years
- For n = 20, the run time is 200 centuries

2/27/00 U-14

What Dominates?

- •What about the 5 in 5N+3? What about the +3?
- ${}^{\bullet}\text{As}~\textsc{n}$ gets large, the +3 becomes insignificant
- The 5 is inaccurate:
- <, [], +, =, ++ require varying amounts of time; different computers by and large differ by a constant factor
- What is fundamental is that the time is *linear* in N
- Asymptotic Complexity: As N gets large, concentrate on the highest order term
- Drop lower order terms such as +3
- Drop the constant coefficient of the highest order term

Asymptotic Complexity

- •The 5N+3 time bound is said to "grow asymptotically" like N
- This gives us an approximation of the complexity of the algorithm
- •Ignores lots of details, concentrates on the bigger picture

2/27/00 U-16

Comparing Algorithms

- •We can now (partially) answer the question, "Given algorithms A and B, which is more efficient?"
- Same as asking "Which algorithm has the smaller asymptotic time bound?"
- For specific values of N, we might get different (and uninformative) answers
- •Instead, compare the growth *rates* for arbitrarily large values of N (the *asymptotic* case)

2/27/00 U-17

Comparing Functions

Definition: If f(N) and g(N) are two complexity functions, we say

$$f(N) = O(g(N))$$

(read "f(N) is order g(N)", or "f(N) is big-O of g(N)")

if there is a constant c such that

 $f(N) \leq cg(N)$

for all sufficiently large N.

2/27/00 U-18

Big-O Notation

- Think of f(N) = O(g(N)) as
- " f(N) grows at most like g(N) " or
- "f grows no faster than g"

(ignoring constant factors, and for large N)

- •Big-O is not a function!
- •Never read = as "equals"!
- Examples:
- \bullet 5N + 3 = O(N) also true: $5N + 3 = O(N^2)$
- $^{\circ}37N^{5} + 7N^{2} 2N + 1 = O(N^{5})$

Computer Science Footnote

- There's a whole big theory of algorithmic complexity
- Typical questions:
- What is the worst case performance (upper bound) of a particular algorithm?
- What is the average case performance of a particular
- What is the best possible performance (lower bound) for a particular type of problem?
- Many difficult questions
 - Complicated mathematics
 - Still many unsolved problems!

2/27/00 U-20

Common Orders of Growth

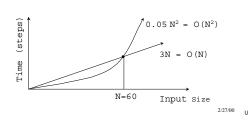
Let N be the input size

$O(k) = O(1)$ $O(\log_b N) = O(\log N)$ $O(N)$ $O(N \log N)$	Constant Time Logarithmic Time Linear Time	Increasing
O(N 10g N) O(N ²) O(N ³)	Quadratic Time Cubic Time	g Complexity
 O(k ^N)	Exponential Time	exity

Nanyinteger is called "polynomial" time Rule of thumb: if it ain't polynomial, it ain't practical

Why is this Useful? (2)

As inputs get larger, any algorithm of a smaller order will be more efficient than an algorithm of a larger order



Big-O Arithmetic

- Remember common functions in order from smallest to largest:
 - 1, log(N), N, Nlog(N), N^2 , N^3 ,..., 2^N , 3^N , . . .
- Ignore constant multipliers
 - $300 \text{ N} + 5\text{N}^4 + 6 \cdot 2^{\text{N}} = O(\text{N} + \text{N}^4 + 2^{\text{N}})$
- Ignore everything except the highest order

$$N + N^4 + 2^N = O(2^N)$$

2/27/00 U-23

Constant Time Statements

Simplest case: 0(1) time statements

- Assignment statements of simple data types
- Arithmetic operations
- x = 5 * y + 4 * z;
- Array referencing
- Referencing/dereferencing pointers
- Declarations of simple data types
- Most conditional tests

if (x < 12) ...

CSE 143 U

Constant Time Statements (2)

Watch out for things that look like simple O(1) time operations, but are actually more complex:

Overloaded operators

```
LinkedList L1 (L2); // deep copy?
Set s1 = s2 + s3; // + for set union?
```

- Declaring complex data types that have constructors
- Function invocations

```
if ( aPriorityQueue.Size() < 10 ) ...
```

2/27/00 Ll-24

Analyzing Loops

Any loop analysis has two parts:

- 1. How many iterations are performed?
- 2. How many steps per iteration?

```
int sum = 0;
for (int j = 0; j < N; j++ )
  sum = sum + j ;</pre>
```

- Loop executes N times (0 . . N-1)
- 4 = O(1) steps per iteration
- Total time is $N \cdot O(1) = O(N \cdot 1) = O(N)$

2/27/00 U-26

Analyzing Loops (2)

•What about this for-loop?

O(100) = O(1)

```
int sum = 0;
for (int j = 0; j < 100; j++ )
    sum = sum + j;

Loop executes 100 times (0 .. 99)
4 = O(1) steps per iteration

Total time is 100 · O(1) = O(100 · 1) =</pre>
```

•That this loop is faster makes sense when N >> 100.

2/27/00 U-27

Analyzing Loops (3)

What about while-loops?

Determine how many times the loop will be executed

```
bool done = false;
int result = 1, n;
cin >> n;
while ( !done ) {
   result = result * n;
   n--;
   if ( n <= 1 ) done = true;</pre>
```

- Loop terminates when done == true, which happens after n iterations
- O(1) time per iteration
- o(n) total time

^{2/27/00} U-28

Nested Loops

 Treat just like a single loop, and evaluate each level of nesting as needed:

```
int j, k, sum = 0;

for ( j = 0; j < N; j++ )

for ( k = N; k > 0; k-- )

sum += k + j;
```

- Start with outer loop:
- How many iterations? N
- How much time per iteration? Need to evaluate inner loop ...
- olnner loop uses O(N) time
- •Total is $N \cdot O(N) = O(N \cdot N) = O(N^2)$

2/27/00 U-29

Nested Loops (2)

•What if the number of iterations of one loop depends on the counter of the other?

```
int j, k, sum = 0;
for ( j = 0; j < N; j++ )
for ( k = 0; k < j; k++ )
sum += k * j;
```

- Analyze inner and outer loops together
- Number of iterations of the inner loop is
- $0 + 1 + 2 + ... + (N-1) = O(N^2)$

•Time per iteration is O(1), for total $O(N^2)$

^{2/27/00} U-30

Sequences of Statements

For a sequence of statements, compute their cost functions individually and add them up

Total cost is $O(N^2) + O(N) + O(1) = O(N^2)$

2/27/00 U-3

Conditional Statements

What about a conditional statement such as

```
if (condition) statement1;
else statement2;
```

where statement1 runs in O(n) time and statement2 runs in $O(n^2)$ time?

- •We use "worst-case complexity": among all inputs of size n, what is the *maximum* running time?
- •The analysis for the example above is O(n2).

2/27/00 U-32

"Worst-Case" vs "Average-Case"

```
if (condition) statement1;
else statement2;
```

- If you knew how often the condition is true, you could compute a weighted average.
 - Extreme case: the conditional might be always true or never true
- "Average case" analysis can be very difficult
- Use tools from probability and statistics
- For many algorithms, it is useful to know both the worst case and the average case complexity

2/27/00 U-33

Cost of Function Calls

F (b, c);

- Cost = cost of making the call + cost of passing the arguments + cost of executing the function
- Making and returning from the call: O(1)
- Passing the arguments: depends on how they are passed
- Cost of execution: must do analysis of the function itself

2/27/00 U-34

Efficiency in Parameter Passing

- Pass by value -- copies entire structure
- Page::Translate(CodeBook cb);
- •What if there's a copy constructor?
- Pass by reference -- does not copy, but allows updates
- Page::Translate(CodeBook& cb);
- Page::Translate(CodeBook * cb);
- const reference -- pass by reference, but do not allow changes
 - Page::Translate(const CodeBook& cb);
- Which technique should you use??

^{2/27/00} U-35

Recursive Algorithms

- •We need to know two things:
 - •number of recursive calls
 - the work done at each level of recursion
- Example: exponentiation

```
int exp (int x, int n) {
  if (n==0)
    return 1;
  else
    return x * exp(x,n-1);
}
```

• The running time is O(n), because there are n recursive calls, and the work done at each call is constant

^{2/27/00} U-36

Recursive Algorithms (2)

•Fibonacci numbers:

```
int fib (int n) {
  if (n == 1 || n == 2)
    return 1;
  else
    return fib(n-1) + fib(n-2);
}
```

- •How many calls?
- How much work at each call?
- Running time?
- In general, a "recurrence relation" results from the analysis, solvable with tools from math.

N is the list size			
	array	linked list	doubly linked list
constructor isEmpty isFull reset advance endOfList data			
size insertBefore insertAfter deleteItem			

List Implementations N is the list size array linked list d li constructor 0(1) 0(1) isBmpty 0(1) 0(1) isBmpty 0(1) 0(1)

		array	linked list	doubly
		ulluj	TIMOU TIDO	linked list
co	nstructor	0(1)	0(1)	0(1)
is	Empty	0(1)	0(1)	0(1)
is	Full	0(1)	0(1)	0(1)
re	set	0(1)	0(1)	0(1)
ad	vance	0(1)	0(1)	0(1)
en	dOfList	0(1)	0(1)	0(1)
da	ta	0(1)	0(1)	0(1)
si	ze	0(1)	O(N)	O(N)
in	sertBefore	O(N)	O(N)	0(1)
in	sertAfter	O(N)	0(1)	0(1)
	leteItem	O(N)	O(N)	0(1)

^{2/27/00} U-39

Dynamic arrays

•When array is full, reallocate new array

```
increase by one
if (size == maxSize) {
  int *tmp = new int[maxSize + 1];
```

double array

if (size == maxSize) {
 int *tmp = new int[2*maxSize];
 ...
}

·What is the cost of

Vector a;
for (int i = 0; i < N; i++)
 a.insert(i, i);</pre>

Dynamic Array Analysis

- Count the sizes of the arrays allocated
- •Increment by one:
- \bullet 1 + 2 + 3 + 4 + . . . + n = O(N²)
- Double size (assume n is a power of 2)
- •1 + 2 + 4 + 8 + 16 + . . . + n/4 + n/2 + n = 2N 1 = O(N)

2/27/00 U-41

Printing a list in reverse order

```
Iterative
```

```
L.GoToEndOfList();
while (! L.StartOfList()){
  L.Previous();
  cout << L.Data();
}</pre>
```

•O(N²) since Previous is O(N)

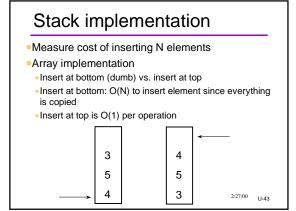
Recursive

```
void List::RevPrint() {
   if (EndOfList()) return;
   int d = Data(); Advance();
   RevPrint(); cout << d;
}</pre>
```

•O(N), N recursive calls at O(1) each

2/27/00 U-4

2/27/00 U-40



Review: Common Orders of Growth Memorize! O(k) = O(1)**Constant Time** $O(log_bN) = O(log N)$ Logarithmic Time Linear Time O(N log N) $O(N^2)$ **Quadratic Time** Cubic Time $O(N_3)$ $O(k^N)$ **Exponential Time** N^{anyinteger} is called "polynomial" time Rule of thumb: if it ain't polynomial, it ain't practical

Summary

- Measuring Efficiency
- Measure as a function of input size N
- Use steps of time or units of memory for measurements
- Asymptotic complexity
- •Growth rate as N gets large
- Order of common complexity functions
- Big-O notation
- Methods for analyzing programs

2/27/00 U-45

Efficiency Debate