
S

S-1

CSE 143

Object-Oriented Design

[Chapters 1, 8]

S-2

Design Methodology
• Changes may result in lots of wasted work!

How to minimize their impact?
– Use a good design methodology

– Procedure and structure by which a design is created

• Top-Down Design, aka structured design
– Focus on overall control flow rather than data.

– Think of problem in terms of functions and algorithms
and how they need to interact

– Often have a layered or hierarchical approach: make
successively more detailed refinements to design

– Traditional design method for C and similar procedural
languages

S-3

Object-Oriented Design

• An alternate design philosophy.

• Instead of control flow and functions, concentrate
on different kinds of entities (“objects”) in the
problem (data-driven approach)

• Object = Collection of data and operations on that
data

• All phases of design are in terms of objects
• Often easier to prototype a design or adapt to

changing conditions

S-4

Designing in the OO Style
Step 1: Identify the objects in the problem, and the

operations they should have
What are the objects in the problem?

Step 2: Determine organization of objects and operations
How do the objects relate to one another?

Are some contained inside another object, or need to organize other
objects?

Drawing an object hierarchy diagram might help

What messages pass between objects?

Step 3: Implement objects (C++ classes, or off-the-shelf)

Tightly encapsulate data and operations

Step 4: Test and refine

S-5

Three Cornerstones of OO
Programming

• Encapsulation
– Packaging data and functions together as

classes

– Hiding implementation details from clients

• Inheritance

• Overloading
– polymorphic functions, dynamic dispatch,

operator overloading
S-6

Historical Notes

• The object model was first thoroughly
developed in Smalltalk
– Smalltalk still looks modern!

• C was as far from object-oriented as you get
can get

• C++ = C + O.O. features
– Considered an ugly hybrid by many

• Java retains much C++ syntax
– but simpler, purer

