| CSE 143 |
| :---: |
| Recursion <br> Chapter 2 <br> Advanced Reading: Chapter 5 |

## Recursion

A recursive definition is one which is defined in terms of itself
Examples:
Compound interest: "The value after 10 years is equal to the interest rate times the value after 9 years."
A phrase is a "palindrome" if the 1st and last letters are the same, and what's inside is itself a palindrome (or is empty).

## Factorial

$n$ ! ("n factorial") can be defined in two ways:
Non-recursive definition
$\mathrm{n}!$ = n * (n-1) (n-2) ... * 2 * 1
Recursive definition
$n!= \begin{cases}1 & , \text { if } n=1\end{cases}$

0 ! is usually defined to be 1
Undefined for negative numbers

## Insist without Iterating

```
char InsistOnYorN (void) {
    char answer;
    cout << "Please enter y or n: " << endl;
    cin >> answer;
    switch (answer) {
        case 'y': return 'y';
        case 'n': return 'n';
        default:
            return InsistOnYorN()
    }
}
```


## Computer Science Examples

Recursive procedure: a procedure that invokes itself

- Recursive data structures: a data structure may contain a pointer to an instance of the same type

```
    struct Node {
```

    int data;
    Node *next;
    \};

Recursive (inductive) definitions: if A and B are arithmetic expressions, then (A) $+(B)$ is a valid expression

Factorial (2)

- How do we write a function that reflects the recursive definition?
int factorial (int $n$ ) \{

$$
\text { assert( } \mathrm{n}>=1 \text { ); }
$$

if ( $\mathrm{n}=1$ )
return 1;
else
return $n$ * factorial(n-1);
\}

- The factorial function invokes itself.
- How can this work?


## What Makes Recursion Work?

Review: local variables and formal params are allocated when \{ \} block is entered, deleted when block is exited.
Here's how:
Whenever a function is called (or \{\} block is entered), a new "activation record" is created, containing:
-- a separate copy of all local variables and parameters
control info, such as where to return to
Activation record is alive until the function returns Then it is destroyed
This applies whether or not function is recursive!

## Simplified Model

Every time you call a function, you get a fresh copy of it.
If you call recursively, you end up with more than one copy of the function active
When you exit a function, only that copy of it goes away.
In reality...
there's only one copy of the code (instructions), but separate copies of the data (variables and parameters)

Tracing the Process

- To trace function calls
- draw a box each time a function is called.
draw an arrow from caller to called function
label data (local vars, params) inside the box indicate the returned value (if any)
- cross out the box after return
and don't reuse it
Question: how is this different from a "static call graph"?
Note that no special handing is needed just because a function happens to be recursive!


## Trace Example

int factorial (int $n$ ) \{
if ( $\mathrm{n}=1$ )
return 1;
else
return n * factorial(n-1);
\}
...
int main (void) \{
int $x=$ factorial (4); cout << "4! = " < x << endl;


## What About Efficiency??

- Is recursion faster/slower/smarter/more powerful etc. than iteration? We'll talk about that, too -later
-Learning how to drive a car, vs learning when and where to drive a car.
- Different kinds of knowledge
- The first especially requires focused practice
data structures are involved
Recursion takes practice
- Eventually it becomes a natural habit of thought


## Infinite Recursion

```
Mathematically:
    n!=n*(n-1)! = (n-1)! * n
    -Why not program it in that order?
    int BadFactorial(n) {
        int x = BadFactorial(n-1);
        if ( }n==1
            return 1;
        else
            return n * x;
    }
```

What is the value of BadFactorial (2)?

- The rule: Must always have some way to make
recursion stop, otherwise it runs forever: 2/13/30
2/13/00 $\quad$ 1-13


## Using Recursion Properly

For correct recursion (recursion that does something useful and eventually stops), need two parts:

1. One or more base cases that are not recursive if ( $\mathrm{n}==1$ ) return 1; // no recursion in this case
2. One or more recursive cases that operate on smaller problems that get closer to a base case return n * factorial(n-1);
//factorial( $n-1$ ) is a smaller problem than factorial ( $n$ )
The base case(s) should always be checked before the recursive calls

## Linear Search

- Problem statement: Given an array A of $N$ ints, search for an element with value x
First, an iterative solution:
// Return index of x if found, or -1 if not
$\mathcal{K}^{\text {int }}$ Find (int All, int $N$, int )

if $(\underset{\text { return } i ;}{ }=\mathbf{x})$
return-1;
- How efficient is this?
- Might find $x$ on first step, or you might have to check all $N$ values On average, it takes about N/2 times through the loop


## Example

Find 26 in the following sorted array:

int find(int $A[]$, int size, int $x$ ) \{
return findInRange (A, $\mathbf{x}, 0$, size-1);
\}
int findInRange(int $A[]$, int $x$, int lo, int hi) \{
if (lo > hi) return -1;
int mid = (lo+hi) / 2;
if ( $x==A[m i d]$ )
return mid;
else if ( $x$ < A[mid])
return findInRange(A, $\mathbf{x}$, lo, mid-1);
else
return findInRange(A, $\mathbf{x}, \operatorname{mid}+1, \mathrm{hi})$;
\}

## Binary Search

If array is sorted, we can search faster - Start search in middle of array
if x is right there in the middle, you're done

- If x is less than middle element, need to search only in lower half
- If x is greater than middle element, need to search only in upper half
- continue the seach within the half chosen

Why is this faster than linear search?

- At each step, linear search throws out one element - Binary search throws out half of remaining elements
-Why is recursion natural here?
2/13/00 $\quad 1$-16


## Binary Search (Recursive)

return findInRange ( $\mathbf{A}, \mathbf{x}, \mathbf{0}$,
\}
int findInRange(int $A[]$, int $x$, int lo, int hi) \{
int mid = (lo+hi)
if ( $x==A[m i d]$ )
else if ( $x$ < $A[m i d]$ )
return findInRange( $A, x$, lo, mid-1);
return findInRange(A, x, mid+1, hi);
\}

## Kick-off and Helper Functions

Previous example illustrates a common pattern:
Top-level "kick-off" function
Not itself recursive
Starts the recursion going
Returns the ultimate answer
Helper function
Contains the actual recursion
May require additional parameters to keep track of the recursion

Client programs only need call the kick-off function

## Recursion with Array Params

```
double sum (double iArray [ ], int from, int to) {
```

    //find the sum of all elements in the array between index "from" and index "to"
        if (from \(>\) to)
            return 0.0;
        return iArray[from] + sum (iArray, from+1, to);
    \}
//Client code:
double CashValues[200];
double total = sum (CashValues, 0, 199):
Implemented without kick-off/helper structure
but might benefit from having it

## How about this one...

int $g($ int $n)$
\{
if ( $\mathrm{n}<=1$ )
return 1;
else if ( $\mathrm{n} \% 2==0$ ) // n even
return $1+g(n / 2)$;
else // n odd
return $1+g\left(3^{*} n+1\right)$;
\}
$g(7)=1+g(22)=2+g(11)=3+g(34)=$
$4+g(17)=5+g(52)=6+g(26)=7+g(13)=$
$8+\mathrm{g}(40)=9+\mathrm{g}(20)=10+\mathrm{g}(10)=9+\mathrm{g}(5)=$
$10+g(16)=11+g(8)=12+g(4)=2 / 13 / 100_{1-22}$
$13+g(2)=14+g(1)=15$
2/13/00 $\quad 1-22$

## In Theory...

Any iteration can be rewritten using recursion, and vice-versa (at least in theory)

- but the rewrite is not always simple!
- Iteration is generally more efficient
- somewhat faster
- takes less memory

A compromise:

- If the problem is naturally recursive, design the algorithm recursively first
- Later convert to iteration if needed for efficiency
-General principle: "Make it right, then make it efficient"

Problems with obvious iterative solution

| So Should You Avoid the R-word? |
| :--- | :--- |
| If a single recursive call is at the very end of the <br> function: <br> - Known as tail recursion <br> - Easy for a smart compiler to automatically rewrite using <br> iteration (but not commonly done by C/c++ compilers) <br> Recursive problems that are not tail recursive are <br> harder to automatically rewrite nonrecursively <br> -Usually have to simulate recursion with a stack |

## Dueling Factoids

Factoid 1: Some programming languages provide no iteration control statements!

- loops must be implemented through recursion
- rely on the compiler to make it efficient
- Prolog, pure LISP

Factoid 2: Not all programming languages support recursion!

- COBOL, FORTRAN (at least early versions)

Many highly paid programmers never use recursion So... why do we make you do it??

## Summary

-Recursion is something defined in terms of itself

- Activation records make it work
- Elements of recursive functions
- Base case(s)
- Recursive case(s)

Base case always checked first

- When to use/when to avoid

As the course unfolds, we'll see more and more cases where recursion is natural to use

