
CSE 143 G

G-11/21/00

CSE 143

Stream I/O

Appendix A

G-21/21/00

Input/Output Concepts

•Concepts should be review!
•New syntax, but same fundamental concepts

•input vs. output, read vs. write
•conversion between characters in a stream and
C/C++ data values (types) in a program

•File concepts
•what is a file?

• file name vs. file variable

•open, close
•end-of-file

G-31/21/00

What’s a Computer?

Central
Processing

Unit

Main
Memory

Monitor

Network

Disk

Keyboard
mouse

G-41/21/00

Stream I/O

•The basic C++ I/O library is built
around the concept of streams.
•both for keyboard/monitor and for files

•Old C-style printf, scanf, etc.
library is still available, but….
•Mixing the two is bad news
•You must use only stream I/O in
CSE143

G-51/21/00

What is a Stream?
A stream is just a sequence of characters,
nothing else:

S m y t h e , J . 9 7 0 1 4 3

anInputStream Input cursor

W e l c o m e t o

anOutputStream Output cursor

C++ Program

input via >> operator

output via << operator

6 4

G-61/21/00

Only characters?!
•Wait a minute... if the stream is only characters,
how can we read or write integers, or doubles, or
strings?

•Answer: the library functions convert other types
to and from characters.

Example: the stream contains
45

That is two characters, not a number!
cin >> i; converts the two characters into an
integer and stores it in the integer variable i.

CSE 143 G

G-71/21/00

Well-Known Streams
•Global streams defined in iostream.h :

•cin: standard input stream (usually keyboard)
•cout: standard output stream (usually screen)
•cerr: standard error stream (also usually
directed to the screen)

•Programs can open other streams to/from
files and other devices.

G-81/21/00

<< Review
For output streams, << is the “put to” or
"insertion" operator

#include <iostream.h>

…

int count = 23;

cout << “Hello, World!” << ‘\n’;

// endl: same as ‘\n’, but flushes output

cout << “The count is ” << count << endl;

G-91/21/00

>> Review
For input streams, >> is the “get from” or
"extraction" operator

#include <iostream.h>
…
int x, ID;
char Name[40];

cin >> x;

cin >> Name >> ID;

// Can read multiple items on one line

// Note: no &’s as with scanf

•<< and >> are aware of the types of the
data

G-101/21/00

How Stream Input Works

Rule: With simple types: leading
whitespace is skipped

int ID;
char Name[40];
char ch;

cin >> ID; // interprets as integer
cin >> ch; // reads a char
cin >> Name; // interprets as character string,

// stopping at trailing whitespace

G-111/21/00

In more detail
int i; char ch; char buffer[BUF_SIZE];

cin >> ch >> buffer >> i;

input: “_hello\t\n15w”

_ \t 1\nolleh 5 w

G-121/21/00

Built-in vs other types
•cin and cout understand the basic C++ types,
including strings

•They do not understand other arrays or user-
defined types (structs, classes, enums, etc)

•But... it is possible to “overload” << and >> to
understand your classes!

•Eventually you will be able to write
cout << myFavoriteBook

•and have it do something reasonable

CSE 143 G

G-131/21/00

Stream States
•All streams have a “state”.
•All streams are objects (instances of stream
classes)

•Several member functions are available to
check or set state.

cin.eof(); // true if cin eof reached
cin.clear(); // set state to “good”

•The stream itself can be used in an
expression to check its state

if (!cin)
cerr << “error or eof on cin” <<

endl;

G-141/21/00

End-Of-File State
•Means there is no more input in the stream
•eof is a state; it’s not a special value in the stream
•eof is most often used with files
•eof with keyboard input?

•User signals by typing a special key combination

•CNTL-Z, CNTL-D, etc. depends on operating system

•The special key is NOT sent to the program. The eof
status is what is detected.

G-151/21/00

Input Errors
•Stream input “fails” if the next thing in the
input has the wrong format or if there is no
more data (end of file).

•If an input operation fails, the variable
involved is not changed.

if (cin >> k)
cout << “new value for k read ok”;

else
cout << “input failed; ”

<< “k not changed”;

G-161/21/00

Input Errors (cont)
•Once a stream input operation has failed,
any further operations will also fail until the
stream state is cleared.

// suppose next input is “xyz”
cin >> k; // fails (why?); k unchanged

cin >> j; // cin state not good, so
// nothing happens

cin.clear(); // cin can be used for
// input again

G-171/21/00

Example: Copy Integers
•This program copies integers from cin to
cout until an input operation fails. Each
integer is written on a separate output line.
#include <iostream.h>
int main() {

int j;
while (cin >> j)

cout << j << ‘\n’;

return 0;

}

G-181/21/00

Reading a Whole Line
•Reading

Seattle Rain
•vs

Seattle-Rain
•cin >> stringvar won’t do the former -- why?
•Need an additional function: getline

cin.getline (stringvar, len);
•Dot notation! What’s happening here??

•Answer: Remember, cin and cout are really objects

CSE 143 G

G-191/21/00

Unformatted Stream I/O
•>> and << provide formatted I/O.

•There are member functions which provide
unformatted (character-level) I/O.

•Examples:
char ch; char s[100];
cin.get(ch); // read 1 character into ch

cin.getline(s,n); // read next line into s
cout.put(ch); // write 1 character ch

•Variations available to limit how many
characters are read, specify end-of-line
characters, etc.

G-201/21/00

Next Step: Files
•Review: File is a named collection of data on disk
•Basic idea of using files in C++: Attach a file to a
stream!
•Then the characters of that file become the characters of
the stream.

•Use class ifstream for input text files, ofstream for
output text files.

•You can attach (open) the file by giving its name
to the constructor:
• ifstream myfile (“c:\\testdata.txt”); // why “\\” here?

G-211/21/00

What is a file?
•A collection of data stored on a disk
•Text file

•A sequence of characters

•Binary file
•stores data in an efficient, non-human-readable, form

•“File name”: a way of naming a file
•OS rules such as DOS: 8 chars . 3 chars

a \n neelif_ d EOF

G-221/21/00

File Operations (Abstract)
•“open”

•Creating a variable to represent the file

•Allows you to access the file’s contents

•“read”
•getting data from the file, similar to cin >> var;

•“write”
•storing data to a file, similar to cout << var;

•“close”
•Tells the OS you’re finished with a file

•Can’t do any more reading/writing

•Might lose data if you forget to close!

G-231/21/00

Stream Classes
•cin and cout are defined in <iostream.h>.
•Library <fstream.h> contains similar classes
for file I/O

•Input stream classes:
•istream: console input (cin)
•ifstream: file input

•Output stream classes
•ostream: console output (cout, cerr)
•ofstream: file output

G-241/21/00

Streams as C++ Classes
•Streams are C++ classes
•Streams have lots of built-in methods
•We use the “.” syntax to access member
functions, as usual.

inFile.get(ch); // get a character

outFile.put(ch); // put a character

outFile.getline(str, len); //get a whole line

outFile.close(); // close the stream

inFile.eof(); // end of File??

CSE 143 G

G-251/21/00

Testing the Stream
•The stream can be tested as if it were a boolean

if (mystream)...
•Two typical occasions for testing:
1. Right after opening, to see if the open worked

ifstream dfile (“c:data”);
if (dfile) cout << “OK”; else cout << “bad”;

2. While processing, to see if end of file
while (dfile) //is the stream still good?

{ keep reading data}

G-261/21/00

File Stream Example
#include <iostream.h>
#include <fstream.h>

void main() {
// open file--ios:: flags needed in MSVC++

ifstream inFile("input.txt",
ios::nocreate | ios::in);

ofstream outFile("output.txt"); // open output
char ch;

// should test for successful opening here..

while (inFile.get(ch)) { // while more input
outFile.put(ch); // write it to output

}

inFile.close(); // close the files...
outFile.close();

}

G-271/21/00

Another File Example
#include <fstream.h>

// multiply every int in a file by a factor
void multiplyFile(char in[], char out[],

int factor) {
// open file--ios:: flags needed in MSVC++

ifstream inFile(in, ios::nocreate | ios::in);
ofstream outFile(out); // open output
int i;

// should test for successful opening here..

while (inFile >> i)) { // while more input
outFile << i * factor << ‘ ‘;

}

inFile.close(); // close the files...
outFile.close();

}
G-281/21/00

Stream Class Relationships
•Every ifstream (file) is also a istream.

•An ifstream is an “enhanced” istream that has extra
capabilities to work with disk files
An ifstream object can be used wherever an istream
object is needed (function parameter, for example)

•But the reverse is not true. An istream is not also an
ifstream.
So if an ifstream is explicitly called for, cin can’t
be used

•A similar relationship holds between ofstreams
and ostreams.

•This is an example of "inheritance"
•An important object-oriented concept we will study later

G-291/21/00

Notes and Advice
•File and stream processing can get VERY
baroque
•Many details, gotchas, exceptions, etc. in the C++
•File formats are often complex

•Learn the basics
•Try to keep it simple (not always possible)
•You can’t memorize it all
•Buy a good C++ book and keep it handy when
programming!
•Bookstore has lots to choose from. Browse and buy one
you like

