CSE 143

Binary Search Trees

[Chapter 10]
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A Problem

* Finding avalue in abinary tree potentially means
visiting every node

» Searching a sorted array would still be faster (via
binary search)

« |f we imposed some ordering on the tree, maybe
we could speed things up...

 Leads to the concept of abinary search tree (BST)
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Binary Search Trees (BST)

« Ordering constraints: for every nodev,
— All datain left subtree of v < value of v
— All datainright subtree of v > value of v
— Note: no duplicate values
« A binary tree with these constraintsis caled abinary
search tree (BST)

« Prerequisite: The items must have a concept of “<* and
s

— Doesthis limit usto ints, doubles, etc.?

— No! In C++, we can use operator overloading to define <, > etc. for
any class.
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BSTsMay Not Be Unique

« Given a set of values, there could be many
possible BSTs
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Examples and Non-Examples

A Binary Search Tree Not aBinary Search Tree
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Finding anitemin aBST

find (root, 6) find (root, 10)
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Code For Finding an Item

If we have a binary search tree, then Find can be done
as.
bool find (BTreeNode *root, int item) {
if ( root == NULL
return false;
else if (item == root->data
return true;
else if (item < root->data
return find (root->left, item);
else

return find(root->right, item);
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Running time of BST £ind
» Bestcase 0(1), itemisat root

* Worst case: O (h), where h is height of tree
* Leadsto aquestion:

— What is the height of abinary search tree with N nodes?
e “Full” tree (29 nodes at each level d) is best case:

Running time of £ind (2)

¢ What if treeisn’t balanced?
* Worst caseis degenerate tree
— Height =N, the number of nodes
¢ Running time of £ind, worst-case, iSo (N)
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—N=21_.1
root
-h = log,(N+1) - 1 = O(log N) ©)
— logarithmic running time
@ @
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Inserting in a BST

Toinsert anew key:
* Two base cases:
—If tree is empty, create new node for item

—If root holds key, return (no duplicate
keys allowed)
* Recursive casel
— If key < root's value, (recursively) insert in left
subtree, otherwise insert in right subtree
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Example

Add 8, 10, 5, 1, 7, 11 to aniinitially empty BST,
in that order:
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Code For Insertingin aBST

// Add data to tree
void insert (BTreeNode *&root, int data) {

if ( root == NULL ) ({
root = new BTreeNode;
root->left = NULL;
root->right = NULL;
root->item = data;
return;

}

if (data < root->item)
insert(root->left, data);

if (data > root->item
insert(root->right, data);
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Example (2)
* What if we change the order in which the numbers
are added?

e Add1,5,7, 8,10, 11to aBST, inthat order
(following the algorithm):
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Complexity of Insert

e Basecase 0(1)

¢ How many recursive calls?
— For each node added, takes O (H) , where u
isthe height of the tree
« Again, what is height of tree?
— Balanced trees yields best-case height of
0(log N) for N nodes

— Degenerate trees yield worst-case height of
O (N) for N nodes

— For random insertions, expected height is
O(log N) --true, but not smpleto prove
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Deleting an Item from aBST

« Simple strategy: lazy deletion
— have aspecid bool inthe node to mark the node as
“deleted”
— leavethe nodein the tree
e The hard way. Must deal with 3 cases
— 1. The deleted item has no children (easy)
— 2. The deleted item has 1 child (harder)
— 3. The deleted iteasz children (way hard)
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Bin Search Tree Deletion

Not covered summer 2000 (next 5 dlides)

Deletion Algorithm

« First find the node (call it N) to delete.
— Will dso need apointer to N's parent

e If Nisaledf, just deleteit.

¢ If N hasjust one child, have N’s parent bypass N
and point to N’s child.
 If N hastwo children:
— Replace N’s item with the smallest item K of the right
subtree
— (Recursively) delete the node that had K (this node is
now useless)

* Note: The smallest item always lives at the leftmos,gggner”
of asubtree (why?) X-17

Code for Delete

Use two mutually recursive functions:

« void deletel tem(int item, BTreeNode * &1);
— find and delete the node containing “item”

« void deleteNode(BTreeNode * &t);

— delete the root node (only)
« precondition: t != NULL
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Deletion (3): Finding the Node
e Thisisthe“easy” part:

void deleteItem(int item,BTreeNode*&t) {
if (t !'= NULL) {

if (item == t->data)
deleteNode (t) ;

else if (item > t->data)
deleteItem(item, t-s>right);

else
deleteIltem(item, t->left);
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Deletion (4): Deleting the Node

void deleteNode (BTreeNode*&t) {
if (t->left && t->right) { // 2 children
t->data = findMin (t->right);
deleteItem(t->data, t->right);

} else { // 0 or 1 child
BTreeNode* oldval = t;
if (t->left) // left child only
t = t-sleft;
else if (t->right) // right child only
t = t->right;
else // no children
t = NULL;
delete oldval; //delete this node
}
} 8/24/00
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Deletion (5): Finding Min

¢ All that remainsis to figure out how to find the
minimum value in a BST

* Remember, the minimum element lives at the
leftmost “corner” of a BST
// PRECONDITION : t is non-NULL
int findMin (BTreeNode* t)
{
assert (t != NULL) ;
while (t->left != NULL)
t = t->left;
return t->data;
}
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Magic Trick

« Suppose you had a bunch of numbers, and inserted
them dl into aninitially empty BST.

« Then suppose you traversed the tree in-order.

« The nodes would be visited in order of their
vaues. In other words, the numbers would come
out sorted!

e Thisis TreeSort: another sorting algorithm.

— O(N log N) most of thetime

— not an “in-place” sort

Trivial to program if you aready have a BST
ADT 8/24/00

Preview of CSC326/373:
Balanced Search Trees

« BST operations are dependent on tree height
- 0(log N) for N nodesif treeisbaanced
- 0(N) if treeisnot

« Can we ensure tree is always balanced?
— Yes insert and delete can be modified to keep
the tree pretty well ba anced
« Exact details are complicated
* Resultsin0 (1og N) “find” operations, even in worst case
— Actualy there are severd different ba anced tree data
structures
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BST Summary

e BST = Binary Treeswith ordering invariant
* Recursive BST search

* Recursive insert, delete functions

O (H) operations, where u is height of tree
0(log N) for N nodesin balanced case

e O(N) inworst case
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