

Branching Structures in CS

- Trees are a common branching structure in CS
- We've seen already:
- Class hierarchies
- Call graphs
- Recursive function traces
- PS: Some branching structures won’t quite be "trees" under our official definition

Linear vs. Branching

- Our data structures so far are linear
- Have a beginning and an end
- Everything falls in order between the ends
- Arrays, linked lists, queues, stacks, priority queues, etc.
- Everyday life has branching structures, too.
- Family genealogy
- Biology: phylum/genus/species
- Company organization chart
- Table of contents

What's in a Node?

- Answer: anything you want!
- Could have a tree of ints, tree of students, animals, appointments, etc.
- All nodes will be of the same (base) type
- For simplicity, we often label the nodes with a single letter or an integer

Formal Textbook Definition

- A general tree T is either empty, or is a set of nodes such that T is partitioned into disjoint subsets:

1. A subset with a single node r (called the root)
2. Subsets that are themselves general trees (these are called the subtrees of T).

- Notes:
- This definition is recursive!
- The nodes are not defined. They can be anything, and still satisfy the definition.

Descendants

- Descendant of a node (recursive definition)
- 1. P is a descendant of P for any node P
- 2. If C is a child of P, and P is a descendant of A, then C is a descendant of A
- Puzzle: neither rule states explicitly that if C is a child of P, C is also a descendant of P . Is it? Do we need another rule?
- Example:
- what are the descendents of j ?
- Of what is 1 a descendant?

Subtree Terminology

- Subtree

- Any node of a tree, with all of its descendants
- Puzzle: is b-c a subtree of the tree starting at a? Is it a tree?

w-11

Tree Terminology

- Empty tree: tree with no nodes
- Child of a node u
- Any node reachable from u by one edge pointing away from u
- Nodes can have zero, one, or more children
- Leaf: a node with no children
- If b is a child of a , then a is the parent of b
- All nodes except root have exactly one parent
- Root has no parent

Ancestors

- Ancestor of a node
- Definition: If D is a descendant of A , then A is an ancestor of D
- Example: j, k, and l are ancestors of l

Height and Level

- Level or depth (recursive definition)
- Level of root node is 1
- Level of any node other than root is one greater than level of its parent

- Height
- Height of a tree is maximum of all depths of its leaves
- Height of empty tree is defined to be 0
- Warning: Definitions vary
- Some textbooks define level of the root node as 0 , - so root node height would be 0 , empty tree height would be -1

Binary Trees

- A binary tree is a tree each of whose nodes has no more than two children
- The two children are called the left child and right child
- The trees which start with these children are called the left subtree and the right subtree
- See textbook for formal recursive definition

Binary Tree as an ADT

- Textbook lists 18 operations!
- constructors and destructors
- bool isEmpty
- return/set root data
- attach left or right child nodes
- attach left or right subtrees
- detach left or right subtrees
- return a copy of left or right subtree
- traversals (more late)

$$
8 / 7 / 00 \quad \text { W-15 }
$$

Binary Tree Data Structure

- Binary tree node (for a tree of ints): struct BTreeNode \{
int item;
BTreeNode *left; BTreeNode *right

\};

- Keep a root pointer to the root node
- Analogous to head pointer for a linked list
- Empty tree has a NULL root
- will usually omit NULL pointers when drawing pictures
- This example shows node for a tree of ints
- but "item" could be any type, even a class object

Importance of Binary Trees

- Binary trees are widely used in Computer Science
- Easier to represent (find a good data structure for) than general trees
- Much easier to manipulate (write and implement algorithms) than general trees
- Turns out that any general tree can be represented using a binary tree.
- Won't discuss in this course

Implementing A Binary Tree

- Using an array
- Efficient
- See textbook 452-453 for details
- Drawbacks: not flexible in terms of size; wastes space if tree is unbalanced
- won't discuss further in this course
- Using dynamic memory
- Similar to linked list implementation
- Two pointers, one each for left and right subtrees
- See textbook 455ff for details
- Will use in this course

Function to Count Nodes

- Base case: Empty tree has zero nodes
- Recursive case: Nonempty tree has one node (the root) plus nodes in left subtree plus nodes in right subtree
int CountNodes(BTreeNode *root)
\{
if (root == NULL)
return 0; // base
else
return 1 + CountNodes (root->left)
\}

Binary Trees and Recursion

struct BTreeNode \{
int item;
BTreeNode *left;
BTreeNode *right;
\};

- Note the recursive data structure
- Algorithms often are recursive as well
- Don't fight it! Recursion is going to be the natural way to express the algorithms
- Challenge: code CountNodes without using recursion

8/7/00 \quad W-19

Analyses

- What is running time of these algorithms?
- Time to execute for one node: O (1)
- Number of recursive calls: $\mathrm{O}(\mathrm{N})$
$-N$ is the number of nodes in tree
- There's no way to miss any node
- There's no way to get to any node twice
- Each node is called from its parent, and a node has only one parent

Finding the Height

- Base case: Empty tree has height 0
- Recursive case: Nonempty tree has height 1 more than maximum height of left and right subtrees
int Height(BTreeNode *root) \{
if (root == NULL)
return 0 ;
else
return $1+\max ($ Height (root->left),
\}

Exercises

Do try these at home!

- 1. Find the sum of all the values (items) in a binary tree of integers
- 2. Find the smallest value in a B.T. of integers
- 3. (A little harder) Count the number of leaf nodes in a B.T.
- 4. (A little harder) Find the average of all the values in a B.T. (one approach: think in terms of a "kickoff" function)

Recursive Tree Searching

- How to tell if a data item is in a binary tree?
bool find (BTreeNode *root, int item) \{
if (root == NULL)
return false;
else if (root->data == item)
return true;
else
return (find (root->left, item) ||
find(root->right, item));
\}

Complexity of Find

- What is the running time of this algorithm?
- Worst case: Has to visit every node in the tree, $\mathrm{O}(\mathrm{N})$
- Can we do better?
- Answer: not without changing the data structure
- We will shortly look at a binary search tree
- Items will have an order, which will make searching more efficient.
- But first we take up another topic: traversals.

Tree Traversal

- Functions to count nodes, find height, sum, etc. systematically "visit" each node
- This is called a traversal
- We also used this word in connection with lists.
- Traversal is a common pattern in many algorithms
- The processing done during the "visit" varies with the algorithm
- What order should nodes be visited in?
- Many are possible
- Three have been singled out as particularly useful: preorder, postorder, and inorder

Inorder

- Unlike pre- and post-, makes sense only for binary trees
- Inorder traversal:
- (Recursively) do inorder traversal of left child
- Then visit the (current) node
- Then (recursively) do inorder traversal of right child

Pre and Post Order Traversals

- Preorder traversal:
- "Visit" the (current) node first
- i.e., do what ever processing is to be done
- Then, (recursively) do preorder traversal on its children, left to right
- Postorder traversal:
- First, (recursively) do postorder traversals of children, left to right
- Visit the node itself last
- PS: These algorithms make sense for nonbinary trees, too.

$$
8 / 7700 \quad \text { w-26 }
$$

Example of Tree Traversal

Assume this question: in what order are the nodes visited, if we start the process at the root?

Preorder:
Inorder:
Postorder:

Traversing to Delete

- Use a postorder traversal to return a whole tree to the heap.

```
    void deleteTree(BTreeNode* t) {
    if (t != NULL) {
        deleteTree(t->left);
        deleteTree(t->right);
        delete t;
    }
    }
```

- Would inorder or preorder work just as wellin?

Sidebar: Syntax and Expression Trees

- Computer programs have a hierarchical structure
- All statements have a fixed form
- Statements can be ordered and nested almost arbitrarily (nested if-then-else)
- Can use a structure known as a syntax tree to represent programs
- Trees capture hierarchical structure

$$
8 / 7 / 00 \quad \mathrm{w}-33
$$

Syntax Trees

- Compilers usually use syntax trees when compiling programs
- Can apply simple rules to check program for syntax errors
- Easier for compiler to translate and optimize than text file
- Process of building a syntax tree is called parsing

Analysis of Tree Traversal

- How many recursive calls?
- Two for every node in tree (plus one initial call);
- O (N) in total for N nodes
- How much time per call?
- Depends on complexity $\mathrm{O}(\mathrm{V})$ of the visit
- For printing and most other types of traversal, visit is 0 (1) time
- Multiply to get total
$-\mathrm{O}(\mathrm{N}) * \mathrm{O}(\mathrm{V})=\mathrm{O}(\mathrm{N} * \mathrm{~V})$
- Does tree shape matter?

Binary Expression Trees

- A binary expression tree is a syntax tree used to represent meaning of a mathematical expression
- Normal mathematical operators like,,+- *, /
- Structure of tree defines result
- Easy to evaluate expressions from their binary expression tree

Expression Magic

- Traverse in postorder for postfix notation! 53 * $91-4 /+1$ -
- Traverse in preorder for prefix notation

$$
-+* 53 /-9141
$$

- Traverse in inorder for infix notation

5 * $3+9$ - $1 / 4$ - 1

- Note that operator precedence may be wrong! Correction: add parentheses at every step $(((5 * 3)+((9-1) / 4))-1)$

Trees Summary (2)

Trees Summary

- Tree as new hierarchical ADT
- Recursive definition and recursive data structure
- Tree terminology
- Nodes; Root node, leaf nodes
- Children, parents, ancestors, descendants
- Depth of node, height of tree
- Subtrees
- Binary Trees
- Either 0,1 , or 2 children at any node
- Recursive functions to manipulate them
- Binary Tree Implementation
- Via node with two pointers
- Tree Traversals
- Preorder traversal
- Postorder traversal
- Inorder traversal (binary trees only)
- Expression and Syntax Trees 8/7/00 w-40

