CSE 143

Searching and Sorting

[Chapter 9, pp. 402-432]

Review: Linear Search

Given an array A of \mathbf{N} ints, search for an element \mathbf{x}.
// Return index of x if found, or -1 if not
int Find (int $A[]$, int N, int x)
\{
for (int $i=0 ; i<N ; i++)$
if ($\mathrm{A}[\mathrm{i}]=\mathbf{x}$)
return i;
$\}^{\text {return -1; }}$
\}

Review: Binary Search

- If array is sorted, we can search faster

Start search in middle of array
If \mathbf{x} is less than middle element, search (recursively) in lower half
If \mathbf{x} is greater than middle element, search (recursively) in upper half
Why is this faster than linear search?
At each step, linear search throws out one element - Binary search throws out half of remaining elements

Two important problems

Search: finding something in a set of data

- Sorting: putting a set of data in order

Both very common, very useful operations
Both can be done more efficiently after some thought
Both have been studied intensively by computer scientists

How Efficient Is Linear Search?
// Return index of x if found, or -1 if not
int Find (int $A[]$, int N, int x)
\{ for (int $i=0 ; i<N ; i++$)
if $(\mathbb{A}[i]==x$)
return
return $-1 ;$
\}

- Problem size: N
- Best case (x is $\mathrm{A}[0]$): $\mathrm{O}(1)$
- Worst case (x not present): O(N)

Average case (\mathbf{x} in middle): $\mathrm{O}(\mathrm{N} / 2)=\mathrm{O}(\mathrm{N})$

- Challenge for math majors: prove this!

8/11/00 V-4

Example

Find 26 in the following sorted array:

1	3	4	7	9	11	15	19	22	24	26	31	35

Binary Search (Recursive)

```
int find(int A[], int size, int x) {
    return findInRange(A, x, 0, size-1);
}
int findInRange(int A[], int x, int lo, int hi) {
        if (lo > hi) return -1;
        int mid = (lo+hi) / 2;
        if (x == A [mid])
        return mid;
        else if (x < A[mid])
            return findInRange(A, x, low, mid-1)
        else
            return findInRange(A, x, mid+1, hi);
}
```


Analysis (recursive)

- Time per recursive call of binary search is 0 (1)
-How many recursive calls?
- Each call discards at least half of the remaining input.
- Recursion ends when input size is 0
- How many times can we divide N in half? $1+\log _{2} \mathrm{~N}$

With o(1) time per call and $O(\log N)$ calls, total is $O(1) * O(\log N)=O(\log N)$

Doubling size of input only adds a single recursive call

- Very fast for large arrays, especially compared to O (N) linear search

Sorting

- Binary search requires a sorted input array But how did the array get sorted?
- Many other applications need sorted input array
- Language dictionaries
- Telephone books
- Printing data in organized fashion

Web search engine results, for example
Spreadsheets

- Data sets may be very large

Sorting Algorithms

Many different sorting algorithms, with many different characteristics

- Some work better on small vs. large inputs

Sorts You May Know

- 142 review
-Bubble Sort
Some think it's a good "intro" sort
Actually it is not a great choice
Selection Sort
Covered in CSE142 textbook
- Insertion Sort

Will discuss shortly

- Mergesort

Quicksort

- Radixsort

Insertion Sort

A bit like sorting a hand full of cards:
Pick up 1 card - it's sorted
Pick up $2^{\text {nd }}$ card; insert it after or before $1^{\text {st }}$ - both sorted
Pick up $3^{\text {rd }}$ card; insert it after, between, or before $1^{\text {st }}$ two

Note: make room for the newly inserted member.

- In an array, this is easiest to do right-to-left

Insertion Sort Analysis

Outer loop - n times

- Inner loop - at most n times

Overall - $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in worst case
${ }^{\circ}\left(\right.$ "Average" is about $\mathrm{n}^{2} / 4$ comparisons.)
In practice, insertion sort is the fastest of the simple quadratic methods
$-2 x-4 x$ faster than bubble or selection sorts, and easier to code (certainly no harder)
-Among fastest methods overall for $\mathrm{n}<20$ or so

Comparing Sorts

-Selection Sort: O(N²)
-Bubble Sort: also O(N²)
-For each of the N elements, you "bubble" through the remaining (up to N) elements
-Insertion Sort: also $\mathrm{O}\left(\mathrm{N}^{2}\right)$ in average case

- But in practice usually faster than selection and bubble
-All are referred to as "quadratic" sorts

Can We Sort Faster Than O(N2)?

Why was binary search so good?

- Answer: at each stage, we divided the problem in two parts, each only half as big as the original
With Insertion Sort, at each stage the new problem was only 1 smaller than the original Same was true of the other quadratic sort algorithms
How could we treat sorting like we do searching? l.e., somehow making the problem much smaller at each stage instead of just a little smaller

An Approach

- Try a "Divide and Conquer" approach

Divide the array into two parts, in some sensible way

- Hopefully doing this dividing up can be done efficiently
- Arrange it so we can
- 1. sort the two halves separately

This would give us the "much smaller" property
2. recombine the two halves easily

This would keep the amount of work reasonable

Use Recursion!

Base case

- an array of size 1 is already sorted!
- Recursive case
- split array in half
- use a recursive call to sort each half
- combine the sorted halves into a sorted array
- Two ways to do the splitting/combining - quicksort
- mergesort

Quicksort

- Discovered by Anthony Hoare (1962)
-Split in half ("Partition")
- Pick an element midval of array (the pivot)

Partition array into two portions, so that 1. all elements less than or equal to midval are left of it, and
2. all elements those greater than midval are right of it

- (Recursively) sort each of those 2 portions

Combining halves
Nothing to do - they are already in place!

Quicksort

```
// sort A[0..N-1]
void quicksort(int A[], int N) {
    qsort(A, 0, N-1);
}
// sort A[lo..hi]
void qsort(int A[], int lo, int hi) {
        if ( lo >= hi ) return;
        int mid = partition(A, lo, hi);
        qsort(A, lo, mid-1);
        qsort(A, mid+1, hi);
}
```

8/11700 V-22

Partitioning Example

Before partition:
$\begin{array}{lllllllll}-5 & 10 & 3 & 0 & 12 & 15 & 2 & -4 & 8\end{array}$
Suppose we choose 5 as the "pivot"
After the partition:
What values are to the left of the pivot?
What values are to the right of the pivot?
What about the exact order of the partitioned array? Does it matter?

Is the array now sorted? Is it "closer" to being sorted?
What is the next step

Partition Helper Function

Partition will have to choose a pivot (midval)
Simple implementation: pivot on first element of array
At the end, have to return new index of midval
We don't know in advance where it will end up!
Have to rearrange A[lo] . . A [hi] so elements \leq midval are left of midval, and the rest are right of midval

- This is tricky code

A Partition Implementation

- Use first element of array section as the pivot - Invariant:

For simplicity, handle only one case per iteration
-This can be tuned to be more efficient, but not needed for our purposes.

Partition

// Partition A[lo..hi]; return location of pivot
// Precondition: lo < hi
int partition(int A[],int lo, int hi)\{
assert(lo < hi);
int $\mathrm{L}=10+1, \mathrm{R}=\mathrm{hi}$;
while ($L<=R$) \{
if ($\mathrm{A}[\mathrm{L}]<=\mathrm{A}[\mathrm{lo}]$) L++;
else if (A[R] > A[lo]) R--
else \{ //A $[L]>$ pivot \&\& $A[R]<=$ pivot $\operatorname{swap}(\mathrm{A}[\mathrm{L}], \mathrm{A}[\mathrm{R}])$;
L++; R--;
\} ${ }^{\}}$
// put pivot element in middle \& return location swap(A[10], A[L-1])
return L-1;
\}

Complexity of Quicksort

Each call to Quicksort (ignoring recursive calls): One call to partition $=O(n)$, where n is size of part of array being sorted
Note: This n is smaller than the N of the original problem

- Some O (1) work
- Total $=O(\mathrm{n})$ for n the size of array part being sorted - Including recursive calls:
- Two recursive calls at each level of recursion, each partitions "half" the array at a cost of $\mathrm{O}(\mathrm{N} / 2)$
-How many levels of recursion?

Best Case for Quicksort

- In the ideal case, partition will split array exactly in half
Depth of recursion is then $\log _{2} \mathbf{N}$
- Total work is $O(\mathrm{~N}) * \mathrm{O}(\log \mathrm{N})=\mathrm{O}(\mathrm{N} \log \mathrm{N})$, much better than $\mathrm{O}\left(\mathrm{N}^{2}\right)$ for insertion sort
Example: Sorting 10,000 items:
-Selection sort: 10,000 ${ }^{2}=100,000,000$
-Quicksort: $10,000 \log _{2} 10,000 \approx 132,877$

Worst Case for Quicksort

If we're very unlucky, then each pass through partition removes only a single element.

In this case, we have N levels of recursion rather than $\log _{2} \mathrm{~N}$. What's the total complexity?

Average Case for Quicksort

How to perform average-case analysis?

- Assume data values are in random order
-What probability that A [lo] is the least element in A?
- If data is random, it is $1 / \mathrm{N}$
- Expected time turns out to be
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$, like best case

Divide \& Conquer Reviseted

Quicksort illustrates "Divide and Conquer" approach:

- Divide the array into two parts, in some sensible way Quicksort: "Partition"
Sort the two parts separately (recursively)
Recombine the two halves easily
Quicksort: nothing to do at this step
Mergesort takes similar steps
Divide the array, sort the parts recursively, recombine the parts

Mergesort Code

void mergesort (int A[], int N) \{
mergesort_help(A, 0, N-1);
\}
void mergesort_help(int A[],int lo,int hi) \{
if (hi - lo >= 1) \{
int mid = (lo + hi) / 2;
mergesort_help (A, lo, mid)
mergesort_help(A, mid + 1, hi);
merge(A, lo, mid, hi);
\}
\}

Back to Worst Case

Can we do better than $\mathrm{O}\left(\mathrm{N}^{2}\right)$?
Depends on how we pick the pivot element midval
Lots of tricks have been tried

- One such trick
pick midval randomly among A [lo],
A[lo+1], ..., A[hi-1], A[hi]
Expected time turns out to be
$\mathrm{O}(\mathrm{N} \log \mathrm{N})$, independent of input

Mergesort

Split into two parts
No partition: just take the first half and the second half of the array, without rearranging
sort the halves separately
Combining the sorted halves ("merge")

- repeatedly pick the least element from each array
compare, and put the smaller in the output array
Example: if the two arrays are
$\begin{array}{lllll}1 & 12 & 15 & 20 & \\ 5 & 6 & 13 & 21 & 30\end{array}$
The "merged" output array is $\begin{array}{lllllllll}1 & 5 & 6 & 12 & 13 & 15 & 20 & 21 & 30\end{array}$
- note: we will need a temporary result array

Merge Code

```
//merge the two arrays A[lo..mid] and A[mid+1..hi]
void merge(int A[], int lo, int mid, int hi){
    nt * tempArray = new int [hi-lo+1];
    assert (tempArray != NULL);
    int fir = lo; int sec = mid + 1;
    for (int i = 0; i <= hi-lo; ++i) {
        if (sec == hi+1 |
                                    (fir<=mid && A[fir] < A[sec]))
            tempArray[i] = A[fir++];
        else
            tempArray[i] = A[sec++];
        }
        or (int n = 0; n <= hi-lo; ++n) {
        A[10 + n] = tempArray[n];
            }
        delete [] tempArray;
}
//What are the crucial preconditions??
\begin{tabular}{|llllllllll|}
\hline \multicolumn{7}{|c|}{ Mergesort Example } \\
\hline 8 & 4 & 2 & 9 & 5 & 6 & 1 & 7 \\
\hline
\end{tabular}


\section*{Mergesort Space Complexity}
- Mergesort (actually Merge) needs a temporary array at each call
Compare with Quicksort, Insertion Sort,etc:
- None of them required a temp array
- All were "in-place" sorts
- Merge's copying back to the original array also increases the run-time

\section*{Mergesort Complexity}
-Time complexity of merge ()\(=O(\quad)\)
- N is size of the part of the array being sorted

Recursive calls:
- Two recursive calls at each level of recursion, each does
"half" the array at a cost of \(O\) (N/2)
- How many levels of recursion?

\section*{Guaranteed Fast Sorting}
- There are other sorting algorithms which are always O ( N \(\log \mathrm{N}\) ), even in worst case
- Examples: Balanced Binary Search Trees, Heapsort

Are also \(\mathrm{O}(\mathrm{N})\) algorithms: Bucket and Radix Sort
Are not always applicable and have other drawbacks
-Why not always use Quicksort?
Others may be hard to implement, may require extra memory Hidden constants: a well-written quicksort will nearly always beat other algorithms
Only merge-based sorts work well with external (disk) data
Data considerations. E.g. Insertion sort is very fast when array is almost sorted already
Other properties, such as preserving order of duplicate keys. \(\mathrm{m}_{00}\) v-4 ("stability").

\section*{Summary}
- Searching
-Linear Search: 0 (N)
-Binary Search: O (log N), needs sorted data
- Sorting
- Insert, Selection Sort: O ( \(\mathrm{N}^{2}\) )

Other quadratic sorts: Bubble
-Mergesort: O(N log N)
Quicksort: average: O (N log N), worst-case: \(\mathrm{O}\left(\mathrm{N}^{2}\right)\)

\section*{Appendix}

Selection Sort, Bucket Sort, and Radix Sort

\section*{Selection Sort}
- Simple -- what you might do by hand
- Idea: Make repeated passes through the array, picking the smallest, then second smallest, etc., and move each to the front of the array
void selectionSort (int \(\mathrm{A}[\) ], int N ) \{
for (int lo=0; lo<N-1; lo++) \{
int \(k=\) indexOfSmallest(A, lo, \(\mathbf{N}-1\) );
swap(A[lo], A[k]);
\}
\}

\section*{Analysis of IndexOfSmallest}

Finding the smallest element:
int indexOfSmallest (int \(A[ \}\), int lo, int hi) \{ int smallIndex = lo;
for (int \(i=10+1 ; i<=h i ; i++)\)
if (A[i] < A[smallindex])
smallIndex = i;
return smallIndex;
\}

How much work does indexOfSmallest do?

\section*{Analysis of Selection Sort}

Loop in selectionSort iterates \(\qquad\) times

How much work is done each time... by indexOfSmallest by swap
by other statements
Full formula:

Asymptotic complexity:

\section*{Shortcut Analysis}

Go through outer loop about N times
Each time, the amount of work done is no worse than about \(\mathrm{N}+\mathrm{C}\)
-So overall, we do about \(\mathrm{N}^{*}(\mathrm{~N}+\mathrm{c})\) steps, or \(\mathrm{O}\left(\mathrm{N}^{2}\right)\)

\section*{Guaranteed Fast Sorting}

There are other sorting algorithms which are always 0 ( N \(\log \mathrm{N}\) ), even in worst case

Examples: Mergesort, Balanced Binary Search Trees, Heapsort
Why not always use something other than Quicksort? Others may be hard to implement, may require extra memory Hidden constants: a well-written quicksort will nearly always beat other algorithms

\section*{"Bucket Sort:" Even Faster Sorting}

Sort n integers from the range \(1 . . \mathrm{m}\)
1. Use temporary array \(T\) of size \(m\) initialized to some sentinel value
2. If \(v\) occurs in the data, "mark" T[v]
3. Make pass over T to "condense" the values
- Run time \(\mathrm{O}(\mathrm{n}+\mathrm{m})\)
-Example ( \(n=5, m=6\) )
Data: 9, 3, 8, 1, 6


8/11/00 V-50

\section*{Reasons Not to Always Use Bucket Sort}

Integers might be from a large range Social Security Numbers: requires an array T[999999999] no matter how few data points
- Large arrays will either be disallowed by the compiler, or written to disk (causing extreme slowdown)
- You may not know m in advance
- Might be no reasonable sentinel value
- If any positive or negative integer is possible
- Sort key might not be an integer - Salary, date, name, etc.

\section*{Larger numbers}

What about 2 and 3-digit numbers?
- Sort low digits first, then high digits
- original: 45923360295514
- first pass:
- final pass:
- Complexity
\# of passes? work per pass? overall?
Problems
- You may not know \# of digits in advance Sort key might not be an integer salary, date, name, etc.

Radix Sort: Another Fast Sort
- Imagine you only had to sort numbers from 0 to 9
- First, figure out how many of each number
- array: 46279744
occurrances? 0
Next, calculate starting index for each number
indices? \(0 \quad 1 \quad 2 \begin{array}{llllllll} & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}\)
- Last, put numbers into correct position


8/11/00 V-52

\section*{Summary}
- Searching
- Linear Search: O (N)
- Binary Search: O(log \()\), needs sorted data
- Sorting
- Selection Sort: O ( \(\mathrm{N}^{2}\) )

Other quadratic sorts: Insertion, Bubble
- Mergesort: O (N log N)
- Quicksort: \(\mathrm{O}(\mathrm{N} \log \mathrm{N})\) average, \(\mathrm{O}\left(\mathrm{N}^{2}\right)\) worst-case
- Bucketsort: O(N) [but what about space??]
-Radixsort: O (N * D)
    salary, date, name, etc.```

