
CSE 143 V

V-18/11/00

CSE 143

Searching and Sorting

[Chapter 9, pp. 402-432]

V-28/11/00

Two important problems
•Search: finding something in a set of data
•Sorting: putting a set of data in order
•Both very common, very useful operations
•Both can be done more efficiently after some
thought

•Both have been studied intensively by computer
scientists

V-38/11/00

Review: Linear Search
•Given an array A of N ints, search for an
element x.

// Return index of x if found, or -1 if not

int Find (int A[], int N, int x)
{
for (int i = 0; i < N; i++)

if (A[i] == x)
return i;

return -1;
}

V-48/11/00

How Efficient Is Linear Search?

// Return index of x if found, or -1 if not

int Find (int A[], int N, int x)
{
for (int i = 0; i < N; i++)
if (A[i] == x)
return i;

return -1;
}

•Problem size: N
•Best case (x is A[0]): O(1)
•Worst case (x not present): O(N)
•Average case (x in middle): O(N/2) = O(N)

•Challenge for math majors: prove this!

V-58/11/00

Review: Binary Search
•If array is sorted, we can search faster

•Start search in middle of array

• If x is less than middle element, search (recursively) in
lower half

• If x is greater than middle element, search (recursively)
in upper half

•Why is this faster than linear search?
•At each step, linear search throws out one element

•Binary search throws out half of remaining elements

V-68/11/00

Example

Find 26 in the following sorted array:
1 3 4 7 9 11 15 19 22 24 26 31 35 50 61

22 24 26 31 35 50 61

22 24 26

26

CSE 143 V

V-78/11/00

Binary Search (Recursive)
int find(int A[], int size, int x) {

return findInRange(A, x, 0, size-1);

}

int findInRange(int A[], int x, int lo, int hi) {

if (lo > hi) return -1;

int mid = (lo+hi) / 2;

if (x == A[mid])

return mid;

else if (x < A[mid])

return findInRange(A, x, low, mid-1);

else

return findInRange(A, x, mid+1, hi);

}

V-88/11/00

Analysis (recursive)
•Time per recursive call of binary search is O(1)

•How many recursive calls?
•Each call discards at least half of the remaining input.
•Recursion ends when input size is 0

•How many times can we divide N in half? 1+log2N

•With O(1) time per call and O(log N) calls, total
is O(1)*O(log N) = O(log N)

•Doubling size of input only adds a single recursive
call
•Very fast for large arrays, especially compared to O(N)
linear search

V-98/11/00

Binary Search Sizes

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All paths from the size N case
to a size 0 case are the same
length: 1+log2N

Any given run of B.S. will
follow only one path from
the root to a leaf

V-108/11/00

Sorting

•Binary search requires a sorted input array
But how did the array get sorted?

•Many other applications need sorted input
array
•Language dictionaries

•Telephone books
•Printing data in organized fashion
Web search engine results, for example

•Spreadsheets

•Data sets may be very large

V-118/11/00

Sorting Algorithms
Many different sorting algorithms, with many
different characteristics

• Some work better on small vs. large inputs
• Some preserve relative ordering of “equal”

elements (stable sorts)
• Some need extra memory, some are in-place
• Some designed to exploit data locality (not

jump around in memory/disk)

•Which ones are best?
• Efficiency analysis is one way to compare

V-128/11/00

Sorts You May Know
•142 review

•Bubble Sort
Some think it’s a good “intro” sort

Actually it is not a great choice

•Selection Sort
Covered in CSE142 textbook

• Insertion Sort
Will discuss shortly

•Mergesort
•Quicksort
•Radixsort

CSE 143 V

V-138/11/00

Insertion Sort
•A bit like sorting a hand full of cards:

• Pick up 1 card – it's sorted

• Pick up 2nd card; insert it after or before 1st – both sorted

• Pick up 3rd card; insert it after, between, or before 1st two

• …

•Note: make room for the newly inserted member.
•In an array, this is easiest to do right-to-left

VRUWHG���������XQVRUWHG

V-148/11/00

Insertion Sort
Code

void insert(int list[], int n) {
int i;
for (int j=1 ; j < n; ++j) {

// pre: 1<=j && j<n && list[0 ... j-1] in sorted order
int temp = list[j];
for (i = j-1 ; i >= 0 && list[i] > temp ; --i) {

list[i+1] = list[i] ;
}
list[i+1] = temp ;
// post: 1<=j && j<n && list[0 ... j] in sorted order

}
}

VRUWHG�������XQVRUWHG

VRUWHG�� XQVRUWHG

V-158/11/00

Insertion Sort Analysis
•Outer loop – n times
•Inner loop – at most n times
•Overall – O(n2) in worst case
•("Average" is about n2/4 comparisons.)

•In practice, insertion sort is the fastest of the
simple quadratic methods

•2x - 4x faster than bubble or selection sorts, and
easier to code (certainly no harder)

•Among fastest methods overall for n < 20 or so

V-168/11/00

Comparing Sorts
•Selection Sort: O(N2)
•Bubble Sort: also O(N2)

•For each of the N elements, you "bubble" through the
remaining (up to N) elements

•Insertion Sort: also O(N2) in average case
•But in practice usually faster than selection and bubble

•All are referred to as "quadratic" sorts

V-178/11/00

Can We Sort Faster Than O(N2)?

•Why was binary search so good?
•Answer: at each stage, we divided the problem in two
parts, each only half as big as the original

•With Insertion Sort, at each stage the new
problem was only 1 smaller than the original
•Same was true of the other quadratic sort algorithms

•How could we treat sorting like we do searching?
• I.e., somehow making the problem much smaller at each
stage instead of just a little smaller

V-188/11/00

An Approach
•Try a “Divide and Conquer” approach
•Divide the array into two parts, in some sensible
way
•Hopefully doing this dividing up can be done efficiently

•Arrange it so we can
•1. sort the two halves separately
This would give us the "much smaller" property

•2. recombine the two halves easily
This would keep the amount of work reasonable

CSE 143 V

V-198/11/00

Use Recursion!
•Base case

•an array of size 1 is already sorted!

•Recursive case
•split array in half

•use a recursive call to sort each half
•combine the sorted halves into a sorted array

•Two ways to do the splitting/combining
•quicksort

•mergesort

V-208/11/00

Quicksort

•Discovered by Anthony Hoare (1962)
•Split in half (“Partition”)

•Pick an element midval of array (the pivot)

•Partition array into two portions, so that
1. all elements less than or equal to midval are left
of it, and

2. all elements those greater than midval are right
of it

•(Recursively) sort each of those 2 portions

•Combining halves
•Nothing to do – they are already in place!

V-218/11/00

Partitioning Example
•Before partition:

•5 10 3 0 12 15 2 -4 8
•Suppose we choose 5 as the "pivot"
•After the partition:

•What values are to the left of the pivot?
•What values are to the right of the pivot?

•What about the exact order of the partitioned array?
Does it matter?

• Is the array now sorted? Is it "closer" to being sorted?

•What is the next step

V-228/11/00

Quicksort

// sort A[0..N-1]
void quicksort(int A[], int N) {
qsort(A, 0, N-1);

}

// sort A[lo..hi]
void qsort(int A[], int lo, int hi) {

if (lo >= hi) return;

int mid = partition(A, lo, hi);
qsort(A, lo, mid-1);
qsort(A, mid+1, hi);

}

V-238/11/00

Partition Helper Function

•Partition will have to choose a pivot (midval)

•Simple implementation: pivot on first element of array

•At the end, have to return new index of midval

•We don't know in advance where it will end up!

•Have to rearrange A[lo] .. A[hi] so
elements < midval are left of midval , and the
rest are right of midval

•This is tricky code

V-248/11/00

•Use first element of array section as the pivot

•Invariant:

•For simplicity, handle only one case per iteration
•This can be tuned to be more efficient,
but not needed for our purposes.

A Partition Implementation

A x <=x unprocessed >x

lo L R hi

pivot

CSE 143 V

V-258/11/00

Partition
// Partition A[lo..hi]; return location of pivot
// Precondition: lo < hi
int partition(int A[],int lo,int hi){
assert(lo < hi);
int L = lo+1, R = hi;
while (L <= R) {

if (A[L] <= A[lo]) L++;
else if (A[R] > A[lo]) R--;
else { // A[L] > pivot && A[R] <= pivot

swap(A[L],A[R]);
L++; R--;

}
}
// put pivot element in middle & return location
swap(A[lo],A[L-1]);
return L-1;

}
V-268/11/00

Example of Quicksort
6 4 2 9 5 8 1 7

V-278/11/00

Complexity of Quicksort
•Each call to Quicksort (ignoring recursive calls):

•One call to partition = O(n), where n is size of part
of array being sorted
Note: This n is smaller than the N of the original
problem

•Some O(1) work

•Total = O(n) for n the size of array part being sorted

•Including recursive calls:
•Two recursive calls at each level of recursion, each
partitions “half” the array at a cost of O(N/2)

•How many levels of recursion?

V-288/11/00

QuickSort (Ideally)

N

N/2 N/2

N/4 N/4 N/4 N/4

1

0 0

1

0 0

1

0 0

1

0 0...

... ...

All boxes are executed (except
some of the 0 cases)

Total work at each level is O(N)

V-298/11/00

Best Case for Quicksort

•In the ideal case, partition will split array
exactly in half

•Depth of recursion is then log2 N

•Total work is O(N)*O(log N) = O(N log N),
much better than O(N2) for insertion sort

•Example: Sorting 10,000 items:

•Selection sort: 10,0002 = 100,000,000

•Quicksort: 10,000 log2 10,000 ≈ 132,877

V-308/11/00

Worst Case for Quicksort
•If we’re very unlucky, then each pass through
partition removes only a single element.

•In this case, we have N levels of recursion rather
than log2N. What’s the total complexity?

1 2 3 4

1 2 3 4

2 3 4

3 4

1 2 3 4

CSE 143 V

V-318/11/00

Average Case for Quicksort

•How to perform average-case analysis?
•Assume data values are in random order

•What probability that A[lo] is the least
element in A?
•If data is random, it is 1/N

•Expected time turns out to be

O(N log N), like best case

V-328/11/00

Back to Worst Case

•Can we do better than O(N2)?
•Depends on how we pick the pivot element
midval

•Lots of tricks have been tried

•One such trick:
•pick midval randomly among A[lo],
A[lo+1], …, A[hi-1], A[hi]

•Expected time turns out to be

O(N log N), independent of input

V-338/11/00

Divide & Conquer Reviseted

•Quicksort illustrates “Divide and Conquer”
approach:
•Divide the array into two parts, in some sensible way
Quicksort: "Partition"

•Sort the two parts separately (recursively)

•Recombine the two halves easily
Quicksort: nothing to do at this step

•Mergesort takes similar steps
•Divide the array, sort the parts recursively, recombine
the parts

V-348/11/00

Mergesort
•Split into two parts

• No partition: just take the first half and the second half of the array,
without rearranging

• sort the halves separately

•Combining the sorted halves (“merge”)
• repeatedly pick the least element from each array

• compare, and put the smaller in the output array

• Example: if the two arrays are
1 12 15 20

5 6 13 21 30

The "merged" output array is

1 5 6 12 13 15 20 21 30

• note: we will need a temporary result array

V-358/11/00

Mergesort Code
void mergesort(int A[], int N) {

mergesort_help(A, 0, N-1);

}

void mergesort_help(int A[],int lo,int hi) {

if (hi – lo >= 1) {
int mid = (lo + hi) / 2;

mergesort_help(A, lo, mid);
mergesort_help(A, mid + 1, hi);
merge(A, lo, mid, hi);

}
}

V-368/11/00

Merge Code
//merge the two arrays A[lo..mid] and A[mid+1..hi]

void merge(int A[], int lo, int mid, int hi){

int * tempArray = new int [hi-lo+1];

assert (tempArray != NULL);

int fir = lo; int sec = mid + 1;

for (int i = 0; i <= hi-lo; ++i) {

if (sec == hi+1 ||

(fir<=mid && A[fir] < A[sec]))

tempArray[i] = A[fir++];

else

tempArray[i] = A[sec++];

}

for (int n = 0; n <= hi-lo; ++n) {

A[lo + n] = tempArray[n];

}

delete [] tempArray;

}

//What are the crucial preconditions??

CSE 143 V

V-378/11/00

Mergesort Example
8 4 2 9 5 6 1 7

V-388/11/00

Mergesort Complexity
•Time complexity of merge() = O()

•N is size of the part of the array being sorted

•Recursive calls:
•Two recursive calls at each level of recursion, each does
“half” the array at a cost of O(N/2)

•How many levels of recursion?

V-398/11/00

Mergesort Recursion

N

N/2 N/2

N/4 N/4 N/4 N/4

2

1 1

2

1 1

2

1 1

2

1 1...

... ...

All boxes are executed

Total work at each level is O(N)
O()
levels

V-408/11/00

Mergesort Space Complexity

•Mergesort (actually Merge) needs a temporary
array at each call

•Compare with Quicksort, Insertion Sort,etc:
•None of them required a temp array

•All were "in-place" sorts

•Merge's copying back to the original array also
increases the run-time

V-418/11/00

Guaranteed Fast Sorting
•There are other sorting algorithms which are always O(N
log N), even in worst case
• Examples: Balanced Binary Search Trees, Heapsort

• Are also O(N) algorithms: Bucket and Radix Sort
Are not always applicable and have other drawbacks

•Why not always use Quicksort?
• Others may be hard to implement, may require extra memory

• Hidden constants: a well-written quicksort will nearly always beat
other algorithms

• Only merge-based sorts work well with external (disk) data

• Data considerations. E.g. Insertion sort is very fast when array is
almost sorted already

• Other properties, such as preserving order of duplicate keys
("stability").

V-428/11/00

Summary
•Searching

•Linear Search: O(N)
•Binary Search: O(log N), needs sorted data

•Sorting
•Insert, Selection Sort: O(N2)
Other quadratic sorts: Bubble

•Mergesort: O(N log N)
•Quicksort: average: O(N log N), worst-case:
O(N2)

CSE 143 V

V-438/11/00

Appendix

Selection Sort, Bucket Sort, and Radix
Sort

V-448/11/00

Selection Sort
•Simple -- what you might do by hand
•Idea: Make repeated passes through the array,
picking the smallest, then second smallest, etc.,
and move each to the front of the array

void selectionSort (int A[], int N) {
for (int lo=0; lo<N-1; lo++) {

int k = indexOfSmallest(A, lo, N-1);
swap(A[lo], A[k]);
}

}

V-458/11/00

0 k2 31
A

4

V-468/11/00

Analysis of IndexOfSmallest

•Finding the smallest element:
int indexOfSmallest(int A[], int lo, int hi) {

int smallIndex = lo;

for (int i=lo+1; i<=hi; i++)

if (A[i] < A[smallIndex])

smallIndex = i;

return smallIndex;

}

•How much work does indexOfSmallest do?

V-478/11/00

Analysis of Selection Sort
•Loop in selectionSort iterates ___ times

•How much work is done each time...
•by indexOfSmallest
•by swap
•by other statements

•Full formula:

•Asymptotic complexity:

V-488/11/00

Shortcut Analysis
•Go through outer loop about N times
•Each time, the amount of work done is no worse
than about N+c

•So overall, we do about N*(N+c) steps, or O(N2)

CSE 143 V

V-498/11/00

Guaranteed Fast Sorting
•There are other sorting algorithms which are always O(N
log N), even in worst case
• Examples: Mergesort, Balanced Binary Search Trees, Heapsort

•Why not always use something other than Quicksort?
• Others may be hard to implement, may require extra memory

• Hidden constants: a well-written quicksort will nearly always beat
other algorithms

V-508/11/00

“Bucket Sort:” Even Faster Sorting

•Sort n integers from the range 1..m
1. Use temporary array T of size m

initialized to some sentinel value

2. If v occurs in the data, "mark" T[v]
3. Make pass over T to "condense" the values
•Run time O(n + m)
•Example (n = 5, m = 6)

Data: 9, 3, 8, 1, 6

T

V-518/11/00

Reasons Not to Always Use Bucket Sort

•Integers might be from a large range
•Social Security Numbers: requires an array
T[999999999] no matter how few data points

•Large arrays will either be disallowed by the compiler, or
written to disk (causing extreme slowdown)

•You may not know m in advance
•Might be no reasonable sentinel value

• If any positive or negative integer is possible

•Sort key might not be an integer
•Salary, date, name, etc.

V-528/11/00

Radix Sort: Another Fast Sort

•Imagine you only had to sort numbers from 0 to 9

•First, figure out how many of each number
• array: 4 6 2 7 9 7 4 4

• occurrances? 0 1 2 3 4 5 6 7 8 9

•Next, calculate starting index for each number
• indices? 0 1 2 3 4 5 6 7 8 9

•Last, put numbers into correct position

•Run time O(n)

•So far, this is identical to bucket sort...

V-538/11/00

Larger numbers

•What about 2 and 3-digit numbers?
•Sort low digits first, then high digits

•original: 45 92 33 60 29 55 14
• first pass:
• final pass:

•Complexity
•# of passes? work per pass? overall?

•Problems
•You may not know # of digits in advance
•Sort key might not be an integer
Salary, date, name, etc.

V-548/11/00

Summary
•Searching

•Linear Search: O(N)
•Binary Search: O(log N), needs sorted data

•Sorting
•Selection Sort: O(N2)
Other quadratic sorts: Insertion, Bubble

•Mergesort: O(N log N)
•Quicksort: O(N log N) average, O(N2) worst-case
•Bucketsort: O(N) [but what about space??]
•Radixsort: O(N * D)

