

W	hy is	s this	Usefu	ıl?	
What	happe	ns when	we double	e the inp	ut size N?
Ν	$\log_2 N$	5N	N $\log_2 N$	\mathbb{N}^2	2 ^N
8	3	40	24	64	256
16	4	80	64	256	65536
32	5	160	160	1024	~109
64	6	320	384	4096	~1019
128	7	640	896	16384	~1038
256	8	1280	2048	65536	~1076
10000	13	50000	105	108	~10 ³⁰¹⁰
					8///00 U-11

lf	We	Sped	Up th	ne CF	PU	
Even is or	speedi ly red	ng up by luced to	a factor o 10 ³⁰⁰⁴	of a millio	on, 10 ³⁰¹⁰	
Ν	$\log_2 N$	5N	N $\log_2 N$	\mathbb{N}^2	2 ^N	
						=
8	3	40	24	64	256	
16	4	80	64	256	65536	
32	5	160	160	1024	~109	
64	6	320	384	4096	~1019	
128	7	640	896	16384	~1038	
256	8	1280	2048	65536	~1076	
10000	13	50000	105	108	~103010	
					8/7/00	U-13

If my progr	ram needs f(N) mici	roseconds to solve some
problem,	how big a problem	can I solve in a day?
What if I ge	et a million x faster	computer ?
C ()	N for 1 days	million x N for 1 day
Í(N)	N IOI I UAY	million A, N LOI I day
± (N)	N IOI I GAY	
t (N) N	$N = 9 \times 10^{10}$	million times larger
t (N) N 5N	N = 9 x 10^{10} N = 2 x 10^{10}	million times larger million times larger
f(N) N 5N N log ₂ N	N = 9 x 10^{10} N = 2 x 10^{10} N = 3 x 10^{9}	million times larger million times larger 60,000 times larger
t(N) N 5N N log ₂ N N ²	N 101 1 day N = 9 x 10 ¹⁰ N = 2 x 10 ¹⁰ N = 3 x 10 ⁹ N = 3 x 10 ⁵	million times larger million times larger 60,000 times larger 1,000 times larger
f(N) N 5N N log ₂ N N ² N ³	N 101 1 day N = 9 x 10 ¹⁰ N = 2 x 10 ¹⁰ N = 3 x 10 ⁹ N = 3 x 10 ⁵ N = 4 x 10 ³	million times larger million times larger 60,000 times larger 1,000 times larger 100 times larger

Big numbers

- •Suppose a program has run time proportional to n!
- •Suppose the run time for n = 10 is 1 second •Do the math:
- For n = 12, the run time is 2+ minutes
- The time for 12 is 12! = 10! x 11 x 12 which is 132 times longer that 1 second: 132 seconds • For n = 14, the run time is 6 hours

- 11 x 12 x 13 x 14 times longer
- For n = 16, the run time is 2 months
- For n = 18, the run time is 50 years
- For n = 20, the run time is 200 centuries

Comparing Functions

Definition: If f(N) and g(N) are two complexity functions, we say f(N) = O(q(N))

(read "f(N) is order g(N)", or "f(N) is big-O of g(N)")

if there is a constant c such that $\begin{array}{cc} f\left(\mathbb{N}\right) & \leq & c \ g\left(\mathbb{N}\right) \end{array}$

for all sufficiently large N.

N is the list size			
	array	linked list	doubly linked list
constructor	0(1)	0(1)	0(1)
isEmpty	0(1)	0(1)	O(1)
isFull	0(1)	0(1)	O(1)
reset	0(1)	0(1)	0(1)
advance	0(1)	O(1)	0(1)
endOfList	0(1)	O(1)	0(1)
data	0(1)	0(1)	O(1)
size	0(1)	O(N)	O (N)
insertBefore	O(N)	O(N)	0(1)
insertAfter	O(N)	O(1)	0(1)
deleteItem	O(N)	O (N)	0(1)

- Asymptotic complexity
- •Growth rate as N gets large
- •Order of common complexity functions
- Big-O notation
- Methods for analyzing programs

