
CSE 143 T

T-17/31/00

CSE 143

Scope Review

and Overloading

[Chapter 8, pp. 377-381]

T-27/31/00

Review: Scope
•The "scope" of a name (identifier) is the part of
the program where it is known
•Mostly concerned with variables, parameters, and
function names

•Function/block scope: starts where name is
declared, ends at end of function or block

•Class scope: name can be used inside the class
• including inside method implementations
• :: can be used to put you back inside a class scope

T-37/31/00

Review: Function scope
•Function/block scope: starts where name is
declared, ends at end of function or block

void Snork(int a) // scope of a starts here

{...

 int b; // scope of b starts here

 ...

 while (a > b) {

 int c = 0; // scope of c starts here

 ...

 } // scope of c ends here

...

} // scope of a and b end here

//the name "Snork" is still in scope!

T-47/31/00

Reusing Identifiers
•Variable names may be repeated in different
scopes
••but often it’s terrible stylebut often it’s terrible style

int aVar; // global; Don’t do this!

void Snork(int aVar)

{

 ...

 while (a > b) {

 int aVar = 0;

...

 aVar = a + 1; // which aVar?

 }

}

T-57/31/00

Overloading

•Different functions in same scope can
have same name if argument list is
different
•Function name is said to be overloaded
•Applies to methods or non-methods
•Constructors are common example of
overloading

•In C++, operators (+, *, =, [], etc.) can
also be overloaded

T-67/31/00

Overloading vs. Overriding

•Overriding: same function name and
signature in derived class, overrides
base class
•only one of the two is in scope at a give time
•"virtual" concept applies only to overriding

•Overloading: same function name and
different signature
•both functions are in scope at same time
•Compiler determines which function to call at
compile-time (statically)

S
ig

na
tu

re
 =

 a
rg

u
m

en
t/

re
su

lt
ty

p
es

CSE 143 T

T-77/31/00

Resolving Overloaded Functions

To "resolve" mean to decide which version of
the overloaded function is being called
•Determined by matching actual arguments
against possible formal arguments

•Compiler gives error if not exactly one matches

•If match is not exact, automatic type conversions
are used
constructors might be called, etc.

Complete matching algorithm rather complex

T-87/31/00

Matching Algorithm
•Function declarations

void Snark(int);
void Snark(double);

void Snipe(char []);
void Snipe(double);
void Sneep(char);

void Sneep(double);

Snark(1); // Integer Snark

Snipe(1); // Double Snipe
Sneep(1); // Ambiguous

T-97/31/00

Example of Resolving

•Function declarations
void PrintData(int data) {
cout << "int = " << data << endl; }

void PrintData(char data) {
 cout << "char = ’" << data << "’\n"; }

void PrintData(double data) {
 cout << "double = " << data << endl; }

•Which calls are valid? Which version is called?
PrintData(3);
PrintData("Hello");
PrintData(3.14159);
PrintData(’m’);

T-107/31/00

Overloaded Operators
•For convenience, can define functions
named +, -, *, =, /, ==, etc. on classes
•Gives natural expression to some operations
•Very confusing if abused
•Almost all C++ operators may be overloaded

•Operator functions may be members or
“friends” if access to private data needed

•At least one of the arguments must be a
class!
•E.g. cannot overload the + operator for integers

T-117/31/00

Prototype for Op. Overload
•Function “names” are operator+, operator-, ...
IntList
operator+(const IntList &s, const IntList &t);

•Several ways of setting them up
•The above example is probably a "friend" function
•Could also have a member function:

IntList
IntList::operator+(const IntList &rhs) const;

T-127/31/00

the only part of the
prototype that varies
for each new type

Overloading <<
•Operator << can also be overloaded for new types
•Syntax is rather arcane
•Example:
// write Complex number as <real,imaginary>
friend
ostream &operator<<(ostream &s, Complex z) {
 s << "<" << z.getReal() << ","
 << z.getImaginary() << ">";
 return s;
 }

•Need to return reference to stream
so chained I/O will work (cout << x << y << …)

